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Abstract

For the last several decades, renormalization group (RG) methods have been ap-
plied to a wide variety of problems of turbulence in hydrodynamics and plasma
physics. A comprehensive review of this work will be presented, covering RG meth-
ods in hydrodynamic turbulence and in turbulent systems with coupled fluctuating
fields like magnetohydrodynamic (MHD) turbulence. This review will attempt to
specifically consider several questions about RG: (1) Does RG provide an improve-
ment over previous analytical theories like the direct interaction approximation, or
is RG a useful simplification of those theories? (2) How are nonlocal, or ‘sweeping’
effects treated in RG formalisms, or are they ignored entirely? (3) Can RG theories
treat both local and nonlocal interactions in turbulence?
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1 Overview

High Reynolds number turbulent flow has found many important applications
in science and engineering (Tennekes & Lumley, 1972). The magnetized coun-
terpart is also found in many astrophysical and space plasma applications
(Biskamp, 2003; Goldstein et al., 1995; Elmegreen & Scalo, 2004). The chal-
lenge in computing such flows can be traced to strong nonlinearities which
excite motion on spatial scales that span a vast range of magnitudes (Batch-
elor, 1953; Monin & Yaglom, 1975; Rose & Sulem, 1978; Frisch, 1995; Pope,
2000; Zhou & Speziale, 1998; Zhou et al., 2004).

This paper will provide a comprehensive, up to date review of renormalization
group (RG) methods 1 in fluid and MHD turbulence. These methods raised a
number of fundamental problems and controversies, some of which have never
perhaps been entirely resolved. One of the underly problems is that we seek
to apply RG to systems far from equilibrium.

Although RG remains an active area of research with several papers pub-
lished every year, many years have elapsed since the Annual Review article by
Smith & Woodruff (1998), which remains the only review article on this sub-
ject. Moreover, because that article emphasized the Yakhot & Orszag (1986,
hereafter YO) ε expansion method (ε-RG), it did not provide coverage of all
available RG methods in hydrodynamic turbulence, and it did not discuss
attempts to apply RG to plasma turbulence 2 . In McComb’s (1990) book, a
summary of previous Forster, Nelson, and Stephen (1976, 1977, hereafter FNS)
and De Dominicis & Martin (1979, hereafter DeDM) RG work is immediately
followed by an extensive coverage of his own iterative averaging RG (hereafter,
i-RG) modeling. It also did not review much work that had already been pub-
lished when it appeared. In addition, the review paper of McComb (1995) only
discussed RG briefly. The book by Adzhemyan et al. (1999) is a translation
from Russian and is a resource for its authors’ previous publications.

In the case of RG applications to plasma turbulence in particular, the only
available review appears in two general review articles (Krommes, 1997, 2002),
where RG is only considered very briefly.

The current review will attempt to be more comprehensive, survey more recent

1 There are many books or review articles on aspects of the RG methods for other
scientific applications, among them, see for example, Arnit, 1987; Binney et al.,
1993; Fisher, 1998; Hu, 1983; Kadanoff, 1977; Ma & Mazenko, 1975.
2 It only included a simple scalar model problem (Avellaneda & Majda, 1990,
1992a,b, 1994). Majda & Kramer (1999) provided a detailed review of the work
by Majda and co-workers; see also the work by Nayak (1993) for a RG analysis of
turbulent transport.
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work, and cover the application of RG to a broader range of topics.

This review of RG is organized around three major themes: the relation be-
tween RG theories and previous analytical closure theories, the treatment of
sweeping and straining effects in RG theories, and the treatment of local and
distant interactions in RG theories. To begin, we will describe each of these
themes in some more detail.

(1) RG has much in common with renormalized perturbation theories (RPT)
like the direct interaction approximation (DIA, Kraichnan, 1959) and its
Lagrangian versions (the Lagrangian-history DIA (LHDIA) of Kraich-
nan (1965a)) and the Lagrangian renormalized approximation (LRA) of
Kaneda (1981, 2007; see also Gotoh et al., 1988) 3 . For example, both
RG and RPT use the one-loop approximation 4 . Our first major theme
is the relation between RG and RPT theories. The broad RG program
at first glance suggested that RG offers a significant theoretical improve-
ment over DIA on one hand, and a significant simplification on the other.
Indeed, a successful translation of Wilson’s idea of expansion about a
Gaussian theory (Wilson’s ε-expansion RG, see Wilson, 1975, 1983; Wil-
son & Kogut, 1974) to hydrodynamic turbulence would have established
RG as a rational approximation, a claim which could never be made
for DIA. Moreover, the relative simplicity of all RG schemes permits
straightforward analytical calculation of quantities like the Kolmogorov
constant, which in full DIA remains a complex numerical undertaking.
This analytic simplicity also suggested applications to turbulence model-
ing, another extension which had apparently eluded analytical theories.
Now that the controversy generated by RG has subsided, it is appropri-
ate to revisit these claims and evaluate them impartially. We ask: what
if any advantages do RG formulations offer over analytical theories like
DIA? Does RG improve, or merely simplify, RPT?

(2) A central discovery of Kraichnan (1959) is that ‘sweeping’ (random ad-
vection of small scales by large scales) and ‘straining’ (local distortion of
small scales by scales of comparable size) (Kolmogorov, 1941; Tennekes
& Lumley, 1972) effects both exist in turbulence but each plays a differ-

3 Kida & Goto (1997) and Goto & Kida (1999, 2002), in their work called the closure
Lagrangian DIA (LDIA) and the sparse direct interaction perturbation (SDIP),
derived the same set of equations as the LRA for homogeneous isotropic turbulence
and passive scalar field. Recently, OGorman & Pullin (2005) reported that the
results from these closure agrees well with their direct numerical simulations (DNS)
data
4 Adzhemyan et al., 2002a,b, 2003, 2006 have taken the next step and carried out
the two-loop calculations. Note that, however, the values of the Kolmogorov constant
evaluated from the two-loop calculations are much higher than those obtained from
both experimental measurements and numerical simulations, (≈ 1.6, see for example
Monin & Yaglom, 1975, Zhou & Speziale, 1998)
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ent role in turbulence dynamics. The distinction between the Ironshikov-
Kraichnan (Ironshikov, 1963; Kraichnan, 1965c) spectrum turbulence and
the Kolmogorov spectrum for MHD turbulence rests on precisely on this
distinction (Zhou et al., 2004). Yet, an RPT model in non-Langragian
framework (the local-energy-transfer model, hereafter LET, McComb,
1990) sidesteps sweeping entirely. Furthermore, claims have been made in
the RG literature (Yakhot, Orszag & She (YOS), 1987) that sweeping is
asymptotically negligible. How then is the distinction between sweeping
and straining accounted for by RG theories?

(3) Another important contribution of Kraichnan (1971) which is central to
RPT theories is the different roles of local and distant interactions in
turbulence, even when energy transfer is formally ‘local’: although iner-
tial range energy transfer essentially decouples from the production and
dissipation mechanisms, interactions between inertial range modes of any
scale are possible. It is often claimed that RG theories treat distant inter-
actions as dominant and ignore local interactions. Yet local interactions
are clearly not negligible, as they are responsible for the famous ‘cusp’ in
the eddy viscosity(Kraichnan, 1976), among other phenomena. The re-
cursive RG method (Rose, 1977, Zhou et al., 1988, 1989) was developed
in an attempt to incorporate both local and nonlocal interactions. The
question remains: how do different RG theories account for both local
and distant interactions?

We focus our review on how the key physical processes are handled by different
RG methodologies. At the same time, since the goal of the renormalization
group theory is to reduce the number of degrees of freedom in a turbulent flow,
it is entirely natural that the RG procedure might culminate in a physical
model that is appropriate for engineering or other scientific applications.
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2 Basic description of fluid and MHD turbulence

2.1 Navier-Stokes Equation (NSE)

For high Reynolds number fluid turbulence (Tennekes & Lumley, 1972, Monin
& Yaglom, 1975, Lesieur, 1990, Frisch, 1995, Pope, 2000), dimensionless argu-
ments regarding the triadic interaction and the energy transfer process lead
to the famous Kolmogorov (1941) k−5/3 scaling law 5 . Briefly, a forcing f is
applied to a (dissipative) fluid flow at a certain large scale, L, injecting energy
into the system. The fluid motion at scale r < L becomes unstable and loses
its energy to neighboring smaller scales without directly dissipating it into
heat (i.e., a local inertial energy transfer). This process is assumed to repeat
itself until one reaches the so-called Kolmogorov scale LK, where the energy
transfer is directly dissipated into heat by the molecular viscosity. In steady
state, the rate of energy input at the large scales and the rate of energy dissi-
pation (denoted E) at the Kolmogorov scale are equal to each other as well as
to the energy transfer rate across the spectrum of the intermediate scales 6 .
The level of anisotropy and inhomogeneity, present at the large scales, are
presumed to diminish at the smaller spatial scales. Local isotropy at the small
spatial scales implies one has statistical isotropy and homogeneity on those
scales that are much smaller than L .

We consider incompressible turbulence. The fluctuating momentum equation
(Navier-Stokes equation, NSE) in usual vector notation is

∂u

∂t
+ u · ∇u = −1

ρ
∇p + ν∇2u. (1)

The fluid density ρ and the kinematic viscosity ν, are assumed to be constants
for an incompressible fluid 7 . It is interesting to note that the concept of
molecular viscosity is itself a type of renormalization: the underlying kinetic
collisional degrees of freedom are removed and their effects are represented at
the macroscopic level by a transport coefficient (Huang, 1987).

The pressure fluctuation field, p, is obtained by solving the Poisson equation

5 Here k = |k| is the wavenumber.
6 The energy flux, Π.
7 In this review, we will restrict ourselves to incompressible turbulent flows. There
are a few RG application to compressible flows (see for example, Antonov et al.,
1999 and Staroselsky et al., 1990). There are some additional efforts on applying
the RG procedure to coupled fluctuating fields (see for example, Riahi et al, 1997,
1998a,b)
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(hereafter, the summation convention over repeated subscripts is utilized)

∇2(
p

ρ
) = −∂ui

∂xj

∂uj

∂xi
. (2)

2.2 Magnetohydrodynamics (MHD)Equation

A magneto fluid model is a collisional model that can be applied to a plasma
or fluid that is a good conductor for electric current in the low frequency
limit. Described by magnetohydrodynamics (MHD) (see, for example, Cowl-
ing, 1957, Shercliff, 1965, Nicholson, 1983, Biskamp, 2003, Elmegreen & Scalo,
2004, and Zhou et al., 2004), such systems can be found in astrophysical, geo-
physical, as well as laboratory settings. In particular, MHD turbulence is seen
in the Sun, the solar wind, the interstellar medium, galaxy clusters, accretion
disks, Jupiter, and molecular clouds.

We will restrict ourselves to locally homogeneous MHD turbulence, which is
often invoked in astrophysical and space application so that the problems
become tractable. The incompressible MHD model written in terms of the
fluid velocity u and the magnetic field B, includes a momentum equation

∂u

∂t
+ u · ∇u = −1

ρ
∇p̃ +

1

4πρ
(∇×B)×B + ν∇2u (3)

and a magnetic induction equation

∂B

∂t
= ∇× (u×B) + µ∇2B. (4)

The plasma density ρ, the kinematic viscosity ν, and the magnetic diffusiv-
ity µ, are assumed to be constants 8 . The velocity and magnetic field are
solenoidal, ∇ · u = ∇ ·B = 0, and the pressure p̃ is again determined from a
Poisson equation resulting from taking the divergence of Eq. (3).

Some immediate quantities of interest are the kinetic and magnetic energies,
(which, of course, give the total energy when they are summed) and the cross
helicity (see for example, Goldstein et al., 1995; Zhou & Matthaeus, 1990a,b).
The dimensionless parameters used in this review are the ratio of twice the
cross helicity to the total energy (the so called normalized cross helicity), and
the ratio of kinetic to magnetic energy (known as the Alfvén ratio).

8 see Braginskii, 1965
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2.3 Selected physical parameters

Hydrodynamic turbulent flows are characterized by high Reynolds numbers 9 .
Denoting the root-mean-square (rms) of the fluctuating velocity field by ũ,
the macroscopic Reynolds number is defined as

Re = ũL/ν (5)

(recall that L is a typical large scale), This non-dimensional parameter is a
measure of the relative strength of the non-linear convective term u · ∇u to
the dissipative term ν∇2u in Eq. (1).

The energy dissipation rate, E, is another important parameter since it indi-
cates the rate of energy flux from large to small scales. Kolmogorov suggested,
and Batchlor (1953) illustrated experimentally, that the energy dissipation
rate could be characterized by ũ and L (for some recent results, see, for ex-
ample, Sreenivassan, 1984, 1998, Yeung & Zhou, 1997, Antonia & Pearson,
2000, Pearson et al., 2002, Kenada et al., 2003, Burattini et al., 2005). These
available data suggest that the non-dimensional parameter

DE =
EL
ũ3,

(6)

approaches a constant for sufficiently high Reynolds number.

To characterize MHD turbulence, the kinetic and magnetic Reynolds number,
Re and Rm, are useful parameters. Apart from the kinetic Reynolds number,
Re,

Re = ũL/ν (7)

which we have already defined (but now ũ and L must be re-interpreted as
the typical velocity field and large length scale of the MHD equations), Rm is
the magnetic Reynolds number introduced in a similar manner as

Rm = ũL/µ (8)

where µ is the magnetic diffusivity. Again, we assume the transport coeffi-
cients, ν and µ are constants. The kinetic and magnetic Reynolds numbers

9 Zhou (2007) and Zhou et al. (2003a,b) found that Re ≥ 1.6 ·105 is need to achieve
the so called minimal state, the lowest Reynolds number turbulent state that insures
that the energy containing scales are not contaminated by the dissipation scales
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indicate the relative importance of the flow’s inertial forces to the viscous or
magnetic diffusivity effects.

One may start to wonder why the strength of the magnetic field is absent from
the definition of the magnetic Reynolds number, Rm. It is usually assumed, but
with little broad observational/experimental justification outside of some solar
wind observation(see, for example, Goldstein & Roberts, 1999, Goldstein et al.,
1995), that the turbulent flow ũ is on the same order as the typical magnetic
field strength B̃. Such an assumption, based on an assumed ‘equipartition
of energy’, will greatly simplify the analysis. The Alfvén ratio (between the
kinetic energy EK and the magnetic energy EB)

rA = EK/EB (9)

is order one, and usually ≈ 1/2 in the inertial range. Similarly, Zhou &
Matthaeus (2005) noted that the equality of the kinetic outer scale LK to
the magnetic outer scale LB is often assumed.

However, for many astrophysical applications, the assumption of energy equipar-
tition is questionable or even disallowed. In Zhou & Mattheaus (2005), the
term “non-equipartition” is introduced to refer to cases in which EK 6= EB

or LK 6= LB or both. A dissimilarity in the magnetic and kinetic Reynolds
numbers is one indication of possible non-equipartition, or possible departure
from symmetry, between the flow and magnetic fields in MHD turbulence. For
example in the environments such as the interstellar medium and protogalactic
plasma, the magnetic Prandtl number

Pr =
ν

µ
≡ Rm

Re

(10)

is very large and can even reach 1014 - 1022 (Zhou & Mattheaus, 2005). The
issues related to non-equipartition in MHD will not be examined here since
RG has not been applied to these more complex problems.

3 Straining and Sweeping Motions

The challenge of studying turbulent flow arises due to the very extended range
of strongly interacting scales of motion. Indeed, the concept of turbulent flow
demands the existence of an inertial range (Kolmogorov, 1941; Batchelor,
1953), which separates the spatial scales between the energy input at large
scales and the Kolmogorov scale at very small scales where dissipation takes
place.
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3.1 Straining and sweeping

Suppose energy is injected into the fluid at large scales 10 , L, by some external
forcing. The resultant fluid motion at these scales becomes unstable leading
to large scale vortices or “eddies” (Tennekes & Lumley, 1972; Lumley, 1996).
These interact and break up into smaller scale structures. In the straining case,
starting from “energy containing eddies” at L, this energy transfer is driven by
vortex stretching to smaller and smaller eddies down to the dissipative scale
Lk (Batchelor, 1953).

Basically, the Kolmogorov (1941) theory appeals to an effective statistical
independence of the one-time probability distribution function of the energy-
containing range from that of the inertial-range excitation: at any time instant,
the two ranges know about each other only through the rate of energy flux E
(Chen & Kraichnan, 1989).

A turbulent flow with dominant straining motion (i.e., the local distortion of
small scales by scales of comparable size, Tennekes & Lumley, 1972; Hamling-
ton, Schumacher, and Dahm, 2008) has its interacting scales local as well as a
local energy transfer (Kolmogorov, 1941). This has resulted in the Kolmogorov
energy spectrum that has been verified by many experimental measurements
(Grant et al., 1962; Chapman, 1979; Saddoughi & Veeravalli, 1994).

A major discovery of Kraichnan (1959) is that ‘sweeping’ (i.e., the random
advection of small scales by large scales, Kraichnan, 1964; Tennekes, 1975)
and ‘straining’ effects both exist in turbulence and play very different roles
in the turbulence dynamics. The ‘sweeping’ effect actually lead to an initial
difficulty in Kraichnan’s direct interaction approximation (DIA): the failure
of this theory to predict the Kolmogorov k−5/3 spectrum (Kraichnan, 1959).

Tennekes (1975) pointed out that this implies a statistical form of Taylor’s
hypothesis (1938) so that inertial-range components of the velocity field suf-
fer advective sweeping by the energy-range excitation, ũ. Consequently, the
many-time distribution of the inertial-range excitations must also involve the
magnitude of the sweeping as well as rate of energy flux E.

The underlying idea is that the large scale flow sweeps the spatial fluctuations
past the observation point faster than local nonlinearities can produce distor-
tions, see Fig. 1 (a) (Zhou et al., 2004). The second-order energy spectrum
is independent of the sweeping velocity and maintains a robust Kolmogorov
energy spectrum for a wide range of values of the Reynolds number, see Fig. 2

10 For exmaple, see Eswaran & Pope, 1988, Alvelius, 1999, Jimenez et al., 1993,
Chen et al., 1993, Sullivan et al., 1994, Borue & Orszag, 1996, Overholt & Pope,
1998
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(Grant et al., 1962; Chapman, 1979, Saddoughi & Veeravalli, 1994). However,
as we will discuss in detail in the next subsection, the frequency spectrum and
the higher-order kinetic energy spectrum are influenced by the sweeping.

We now make a remark about the relationship between ”sweeping” and the
well-known Taylor frozen flow hypothesis (Zhou et al., 2004). The Taylor
(1938) hypothesis assumes that a large scale flow, with velocity V, simply
sweeps the turbulence by the point of observation. This approximation, with
a large constant speed V (� fluctuation speed ũ), is used in wind tunnel stud-
ies and in single spacecraft studies of solar wind turbulence (Jokipii, 1973) to
convert time-lagged correlations into spatial correlations 11 .

3.2 Fuid turbulence: frequency spectra and time correlations

For fluid turbulence, it is generally accepted that the principal action of the
large scales on the small scales is to just convect them, without significant
effect on the internal dynamics of these small scales (Tennekes, 1975; Chen &
Kraichnan, 1989, 1997).

The form of the Eulerian time correlation tensors for time stationary flows

Uij(x, τ ) =< ui(x, t)uj(x, t + τ ) > (11)

depends on whether it is dominated by large scale sweeping or by local strain-
ing. In particular, the sound generated by high Reynolds number isotropic
turbulence is very dependent on whether local straining or sweeping are dom-
inant. (Zhou & Rubinstein, 1996).

Consider the isotropic temporal spectrum

E(k, τ ) = Q(k, τ )/(4πk2), (12)

where Qij is the spectrum tensor and k = |k| is the wavenumber.

Now in order to obtain a frequency (ω) spectrum from the single-point, two-
time correlation function, one would naturally appeal to a straightforward
dimensional analyis following Kolmogorov

EL(ω) = Eω−2fL(ω/ω0), (13)

11 Nelkin (1994) has pointed out that this approximation works quite well and the
corrections to this approximation are both complicated and not particularly reliable.
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where the characteristic frequency ω0 = (E/ν)

Suppose there is a mean flow, V , present. Using the Taylor (1938) frozen
turbulence approximation the mean flow will sweep the turbulence by the
point of observation without distortion, yielding the frequency spectrum in
the form

EE(ω) = E2/3V 2/3ω−5/3fE(ω/ωc) (14)

where the cutoff frequency, ωc, is given by

ωc = V/Lk (15)

with Lk the Kolmogorov dissipation scale.

Tennekes (1975) then applied this to the case when there is no mean flow by
assuming a random Taylor sweeping hypothesis. In this case, the mean velocity
is replaced by the rms fluctuations ũ, and the frequency spectrum becomes

ET (ω) = E2/3ũ2/3ω−5/3fT (ωLk/ũ). (16)

Now the Kolmogorov theory appeals to an effective statistical independence
of the one-time probability distribution of the energy-range from that of the
inertial-range excitation: at any instant, the two ranges know about each other
only through E. Tennekes (1975) pointed out that since ω−5/3 decay is slower
than the ω−2 decay, the highest frequencies in the flow are generated by the
sweeping of the small scale fluctuations by the large scale turbulent motion
past the observation point. The large scale turbulent motion carries most of
energy. Consequently, the many-time distribution of the inertial-range excita-
tion should involve the magnitude of the sweep, ũ, as well as E.

3.3 MHD Sweeping

Here we would like to stress a major difference between fluid and MHD tur-
bulence. Unlike fluid turbulence, the nonlocal effect of large scales upon the
small scales (‘sweeping’) is an important issue in MHD turbulence. Beginning
with the work of Iroshnikov (1963) and Kraichnan (1965c), it has been ar-
gued that such effects play a significant role in MHD turbulence, even in the
case of no DC magnetic fields. If there is a strong, large-scale magnetic field,
the small-scale fluctuations are subject to a sweeping-like effect due to Alfvén
wave propagation.
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To discuss this point further, it is useful to write the MHD equation in a
more symmetric form for u and B. Introducing the Elsasser fields (Elsasser,
1950,1956),

z± = u±B/
√

4πρ (17)

the MHD equations (Eqs. 3-4) can be rewritten as

∂z±

∂t
∓VA · ∇z± = −z∓ · ∇z± − 1

ρ
∇P± + µ∇2z± (18)

where we have explicitly separated out a term involving the large scale mag-
netic field (written here in terms of the Alfvén velocity VA = B0/

√
4πρ. For

simplicity, we shall assume here that ν = µ. The pressures P± enforce the
constraints ∇ · z± = 0 for incompressible MHD.

Kraichnan (1965c) pointed out that the mean magnetic field sweeps the small
scale interacting structures and during that sweeping time there is a non-linear
transfer of energy between length scales (in the Kraichnan picture: the “wave
packets” suffer brief “collisions” during which energy transfer occurs). This is
illustrated in Fig 1 b. One can see then that the mean magnetic field acts to
inhibit the nonlinear energy cascade (Chen & Kraichnan, 1997).

The existence of sweeping has a profound implication for MHD turbulence.
Large scales can have profound effects on the small scales under different
equations of motion 12 . The nonzero field is often said to correspond to wave
packets that propagate along the mean field direction. This description can be
misleading because the “packets” may not be spatially localized, and also may
not even propagate. Non-propagating fluctuations with wavevectors strictly
perpendicular to the mean magnetic field have zero phase speed. In any case,
one sees from the MHD equations that both type of fluctuations z± are needed
for the nonlinear terms to be non-zero and sustain turbulence. That fact was
pointed out by Kraichnan (1965c) and has been discussed in the context of
space physics applications (Dobrowolny et al. 1980a,b; Zhou et al. 2004 ).

12 As one can imagine, the MHD energy spectra may be affected by the sweeping,
see subsection 4.5.
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4 Inertial Range: Energy and Forcing Spectra

4.1 Velocity correlation and energy spectra

Assuming that the energy transfer and interacting scales are local, Kolmogorov
(1941) derived the famous scaling law

E(k) = CKE2/3k−5/3. (19)

Here CK is the Kolmogorov constant (for a collection of recent results, see
Sreenivasan 1995, Yeung & Zhou, 1997; Zhou & Speziale, 1998) 13 . The Kol-
mogorov energy spectrum has been supported by turbulent measurements over
a wide range of Reynolds numbers (again, see Fig. 2).

The energy spectrum is related to the correlation of the velocity field by

< ui(k, t)uj(k
′, s) >= Qij(k, t, s)δ(k + k′). (20)

For isotropic stationary turbulence Qij simplified to

Qij(k, t, s) = Dij(k)Q(|k|, t− s). (21)

where Dij(k) = δij − kikj/k
2 and the equal time correlation. Again, we note

that E(k) = 4πk2Q(k, t, t), (Rose & Sulem, 1978).

According to Kolmogorov (1941), excitation in the energy-containing range
does not affect energy transfer within the inertial range. Therefore, the average
rate of energy dissipation, E, is identified with the rate of spectral energy
transfer and the rate of energy production.

In order to infer the form of the inertial-range spectrum, it is necessary to
estimate the magnitude of the transfer function correlations. The transfer
function correlations induce turbulent spectral transfer. The time scale for
the decay of these correlations, τT may depend on any relevant turbulence
parameters (Kraichnan, 1965c; Matthaeus & Zhou, 1989; Zhou & Matthaeus,
1990b). Turbulence theories (Batchelor, 1953; Monin & Yaglom, 1975) indicate
that the energy flux Π is explicitly proportional to τT and depends both on
the wavenumber and on the power of the omni-directional energy spectrum.
In the inertial range, because energy is conserved by the nonlinear interaction

13 It is interesting to note that Praskovsky & Oncley (1994) reported that the Kol-
mogorov constant is found to be weekly dependence on the Reynolds number, using
their high Reynolds number atmospheric surface layer data
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and a local cascade has been assumed, the energy flux Π becomes independent
of the wavenumber k. Since there is no “leak” of energy in the inertial range,
the energy flux Π and dissipation rate E assume the same value. A simple
dimensional analysis leads to (Matthaeus & Zhou, 1989; Zhou & Matthaeus,
1990)

E = C2
1τT (k)k4E2(k), (22)

where C1 is some constant.

We now show how the well-known Kolmogorov spectrum can be obtained
within this framework for homogeneous, isotropic, statistically steady turbu-
lence. In this case, the energy-containing range excitation due to external
agents is absent. Therefore, the time scale reponsible for the energy trans-
fer resulting from nonlinear interaction is just the local dynamical time scale
(Rose & Sulem, 1978)

τnl(k) = [k3E(k)]−1/2. (23)

Here, the wavenumber k is inversely proportional to the length scale in the
inertial range and U(k) = [kE(k)]1/2 is the characteristic velocity of eddies at
wave number k.

Under the Kolmogorov assumption of local energy transfer and local interact-
ing scales, the local dynamical time scale is the only available time scale for ho-
mogeneous, isotropic, statistically steady state turbulence. Hence, τT (k) = τnl.
The Kolmogorov k−5/3 spectrum is thus reproduced.

4.2 Forcing correlation and white noise

Suppose we wish to consider stationary, isotropic steady-state fluid turbulence
- a somewhat artificial but nevertheless interesting problem. In this case we
must add a (hypothetical) stirring forces to the Navier-Stokes equations, so
that the turbulence level can be sustained against the viscous dissipation.
The random force, fi(k, t), is usually taken to have a multivariate normal
distribution with covariance

< fi(k, t)fj(−k, s) >= Dij(k)F (k)δ(t− s), (24)
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where F (k) has dimensions of velocity2/time, and remains to be specified. 14

Typically, the time correlation is assumed as white noise with zero correlation
time.

It has always been the normal practice in turbulence simulations to choose
F (k) to be peaked near the origin k = 0, so that its arbitrary nature is only of
importance at low wavenumbers, and a universal energy spectrum can develop
at large wavenumbers (see for example, Eswaran & Pope, 1988; Sullivan et al.,
1994).

Yet, the application of RG to stirred fluid motion has produced results which
depend strongly on the choice of F (k). Accordingly, questions of how F (k) is
chosen and justified are of considerable importance (Forster et al., 1977; De
Dominics & Martin, 1979, Fourier & Frisch, 1983). In particular, the question
of whether or not F (k) should depend on some characteristic length scale
(such as an ultra-violet cutoff Λ) will surface later as an issue.

In RG, the random forcing is often employed rather than the energy spectrum,
with typical form

F (k) ∝ k−y . (25)

The exponent y will be a focus of attention.

Stationarity requires that the rate at which the stirring forces do work is the
same as the rate of viscous dissipation E, or

∞∫

0

4πk2F (k)dk = E. (26)

We shall see that the utilization of this relationship will surface as an issue
later.

4.3 Forcing correlation and colored noise

Yuan & Ronis (1992) noted that earlier RG calculations, including those of
YO and Ronis (1987), had ignored the actual generation of the turbulence,
e.g., at the boundaries of the system, as well as missing the precise nature of
the stirring force. In particular, Yuan & Ronis (1992) found that there was

14 A recent numerical simulation was conducted by Biferale et. al., 2004. Two related
previous work should be noted, the low numerical resolution by Sain al. (1998) and
the case of shell models by Mazzi et al., 2002
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no a priori theory for the exponents used to characterize the random-force
autocorrelation function.

To illustrate the issue of the generation of random force, Yuan & Ronis (1992)
consider the Navier-Stokes equation in the form

∂v(x, t)

∂t
+ v(x, t) · ∇v(x, t) = −∇[p̂/ρ] + ν∇2v(x, t) + f̂ (x, t), (27)

where v is the kinematic velocity and f̂ is a non-stochastic force that arises
from interactions with the boundaries.

Typically, in turbulent fluids, one could introduce an effective force into NSE
that acts on inertial range length scales to model the nonlinear (turbulent)
transfer from the energy injection scales to the shorter scales. The random-
ness, in some sense, is expected to counteract the reduction in the degrees of
freedom in the problem. Yuan & Ronis (1992) examine this in more detail by
introducing a projection operator P on the velocity field v (and pressure p̂)

u(x, t) ≡ Pv(x, t), (28)

p(x, t) ≡ P p̂(x, t), (29)

so that the projected fields u and p now contain only high-wavenumber in-
formation. By applying this projection operator P to Navier-Stokes equation
one finds

∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t) = −∇[p/ρ] + ν∇2u(x, t) + f(x, t) (30)

where

f(x, t) ≡ P f̂(x, t)−P[v(x, t) · ∇v(x, t)]+ u(x, t) · ∇u(x, t). (31)

They then note that this ‘new’ force, f , contains information about boundary
interactions as well as the mode-coupling effects associated with velocity com-
ponents on the injection scales. Since P f̂(x, t) = 0 away from boundaries, the
random stirring force used in RG studies results from mode coupling between
the energy containing and the smaller scales. Since the motion on all scales
is expected to be ‘chaotic’, including at the energy containing scale, these
authors expected that f(x, t) will have complicated, chaotic time and space
dependences. Therefore, Yuan & Ronis (1992) identified this as the quantity
which is actually modeled by a stochastic force in random stirring models of
turbulence.
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The autocorrelation of the transverse parts of f(x, t) is assumed to have non-
zero correlation time (colored noise). The major problem with such an as-
sumption is that the resulting theory would no longer be Galilean invariant.
Yuan & Ronis (1992) argued, however, that there is no a priori reason why
global Galilean invariance must hold. They reason that the random forces
represents the effects of boundaries and these are not included in a Galilean
transformation.

Carati (1990b) also looked at the extension of the white noise of the forcing
correlation function to a colored noise with a non-zero correlation time. He
also argued that the correlation time as well as the correlation length can be
important due to the appearance of macroscopic scale structures in turbulence.
It is then possible to relate the expansion parameter to the stochastic forcing
correlation. Carati (1990b), unfortunately, did not address the issue that the
resulting theory would not be invariant under Galilean transformation.

4.4 MHD phenomenologies of Kolmogorov and Iroshnikov-Kraichnan

Montgomery and co-workers (Fyfe et al., 1977) argued that the original Kol-
mogorov reasoning and its associated k−5/3 spectrum are also applicable to
MHD. The assumption, as reviewed in Zhou et al. (2004), seems to be that
the nonlinear distortion of eddies is faster than the decorrelation effects as-
sociated with wave propagation. This implies that the nonlinear time scale is
dominant over that for random sweeping or propagation. The k−5/3 spectrum
has received strong support from in situ spacecraft observation of solar wind
(Matthaeus & Goldstein, 1982).

The description of incompressible MHD turbulence by Iroshnikov (1963) and
Kraichnan (1965c) (hereafter, IK theory) retains the same basic underlying
assumptions of Kolmogorov: isotropy and local interactions. The IK theory
differs from the Kolmogorov picture in considering the effect of colliding Alfvén
wave packets. 15 on the energy cascade for higher wavenumbers.

Indeed, small scale fluctuations are envisioned to behave as Alfvén wave pack-
ets traveling along the large-scale magnetic field. The small scale structures
suffer brief collisions between two oppositely propogating wave packets which
provides a basic mechanism for the energy tranfer.

15 Goldreich & Sridhar (1995, 1997) and Sridhar & Goldreich (1994) have raised
two objections against the IK theory. The first one is the anisotropy induced by
large scales. This point, of course, is well known. The second one is that the non-
linear three-wave interactions appeal to by IK are “empty.” These objections were
addressed by Montgomery & Matthaeus 1995, and Ng & Bhattacharjee, 1996, 1997.
For a review, see Zhou et al., 2004.
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Kraichnan (1965c) suggested that the Kolmogorov phenomenology should
also be modified to include magnetic field effects. Again, the same dimen-
sional analysis (see subsection 4.1) leads to (Matthaeus & Zhou, 1989; Zhou
& Matthaeus, 1990b)

E = C2
2τT (k)k4E2(k), (32)

where C2 is a constant.

For MHD turbulence, IK theory argued that the triple velocity correlations
decay in a time on the order of an Alfvén wave period. Therefore, the IK
theory would be setting τT = τA, where

τA ∼
1

vA
, vA = B̃/

√
4πρ, (33)

where B̃ is the typical magnetic field strength. As a result, the well known IK
k−3/2 spectrum is recovered (Matthaeus & Zhou, 1989; Zhou & Matthaeus,
1990).

Two-dimensional simulations (Biskamp & Welter, 1989; Biskamp, 1993) offer
support to the IK scaling. High resolution 2D (20482) MHD simulations of
Galtier et al. (1999) indicate the decay is significant slower than for neu-
tral fluids in a way that favours IK over the Kolmogorov picture. Biskamp &
Muller (2000) concluded that in 2D, because the swirling motions are weak,
as manifested by the steep energy spectrum in 2D fluid turbulence, the Alfvén
wave dynamics will also be weak. Hence, sweeping dominates over local strain-
ing effect. However, Biskamp & Muller (2000) find the energy spectrum in 3D
MHD follows the k−5/3 scaling law.

Mininni & Pouquet (2007) presented a numerical analysis of incompressible
free-decaying magnetohydrodynamic turbulence run on a grid of 15363 points.
The Taylor Reynolds number 16 , Rλ at the maximum of dissipation is 1100.
The initial kinetic and magnetic energies are equal 17 , with negligible correla-
tion. The resulting energy spectrum is a combination of two components, each
moderately resolved. At small scales, weak turbulence shows a k−2

⊥ spectrum,
the perpendicular direction being defined relative to the local quasiuniform
magnetic field. Isotropy is found at the large scales, with a spectral law com-
patible with the k−3/2 Iroshnikov-Kraichnan theory. The authors found that

16 The Reynolds number, Re is approximately 181500, Re is related to the Taylor
Reynolds number by Rλ = (20/3)1/2R

1/2
e for isotropic flow and Rλ ≈ 1.4R

1/2
e . See

Zhou, 2007 for more detail.
17 This is a good example of typical ”equi-partition” approximation, see Zhou and
Matthaeus, 2005.
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the IK spectrum arises from a weakening of the nonlinear interactions due to
the Alfvén waves. Furthermore, the scalings of the structure functions confirm
the non-Kolmogorovian nature of the flow in this range.

4.5 MHD Extended phenomenology

Matthaeus & Zhou (1989) and Zhou & Matthaeus(1990) have developed a
framework for MHD turbulent flows where both the time scales, τnl and τA co-
exist (alternatively, where local and nonlocal interactions are important). The
basic idea is that the lifetime of transfer function correlations τT (k) in MHD
turbulence might be more accurately estimated by taking into account the pos-
sibility that these correlations decay because of the influence of both the exter-
nal agent (sweeping) as well as the turbulent nonlinear interactions (straining)
(Pouquet et al. (1976), Matthaeus& Zhou (1989), Zhou & Matthaeus (1990),
Zhou et al., 2004)

The simple choice of time scale

τT = [
1

τnl(k)
+

1

τA(k)
]−1 (34)

satisfies the two limiting cases of zero and strong external agent, since τA →∞
for zero external agent and τA � τnl for a strong external agent. A generalized
energy spectrum, E(k) ∼ k−m, can be determined which will have a scaling
exponent in the interval 3/2 ≤ m ≤ 5/3. The energy spectral law reduces to
the well known IK and Kolmogorov laws in the appropriate limits (Matthaeus
& Zhou, 1989; Zhou & Matthaeus, 1990b).

Note that the IK theory implicitly assumes the absence of correlation betweeen
the velociy and the magnetic field. Grappin et al. (1982; 1983), Pouquet et
al. (1976), and Zhou & Matthaeus (1990b) extended this phenomenological to
correlated turbulence.

Pouquet et al. (1976) found that, based on EDQNM closure and a strong
helical state, the nonlocal interactions are responsible for the system evolving
to an equipartition of magnetic and kinetic energy while the local interactions
are responsible for the energy transfer.

4.6 MHD forcing spectra

To introduce forcing into the MHD equations is a bit more complicated. In the
first place, one must decide on whether to work with the primitive variables

23



(u,B), or with the Elsas̈ser (Elsas̈ser, 1950, 1956) variables (z±).

In the pioneering work of Fournier et al. (1982), the primitive variables u,B ≡
b/
√

4πρ are employed. The correlations of the stochastic stirring forces were
assumed to increase toward large k. Moreover, they assumed different weights
for the magnetic and kinetic nonlinearities, and different coefficients in the
correlations of the random forces appearing in the fluid and magnetic evolution
equations (i.e., in the spectral k-exponents y1 and y2).

On the other hand Camargo & Tasso (1992) treated the full MHD equation
using Elsas̈ser variables. They inspected the work of Fournier et al. (1982),
and argued that choosing different forcing weights for the magnetic and kinetic
nonlinearities would not be appropriate. They reasoned that in the Elsas̈ser
representation this would lead to a different rescaling of z+ and z−. Also, in
Camargo & Tasso (1992), the correlations of the stochastic stirring force were
assumed to decrease toward large k and the magnetic and kinetic nonlinearities
were weighted in the same way.

Nandy & Bhattacharjee (1998) studied the large-scale long-time properties
of turbulent motions in a symmetric miscible binary fluid (a 2-field problem
like MHD). The governing equations were written in terms of the velocity
and concentration field and driven by random stirring fields. The forces were
assumed to have Gaussian statistics, with correlations k−(d−4+y) and k−(d−2+y′)

(here y and y′ are exponent parameters and d is the space dimension under
consideration). The stability of a RG fixed point 18 is now determined by both
the exponent paramaters y and y′. These authors find that the Kolmogorov
spectrum, which occurs for y = 4 and y′ = 2, is stable.

Hnatich et al. (2001a) reconsidered an RG treatment of MHD (for dimension
d ≥ 2) using the primitive representation of the fluctuating velocity and mag-
netic field. The external random forces fu and fB were assumed to have a
zero-mean Gaussian distribution. These authors also assumed that the time
correlations of the fields are white noise, while the spatial correlations are con-
trolled by the scalar function, F (k). Hnatich et al. chose uncorrelated kinetic
and magnetic driving forces, < fufB >= 0, because they were interested in
arbitrary space dimension d ≥ 2 and it is not possible to define a nonvanish-
ing correlation function of a vector field with a psuedovector field when d is
continuous. In contrast to the claims of Fournier et al. and Camargo & Tasso,
Hnatich et al. (2001a) showed that their choice of uncorrelated kinetic and
magnetic driving correlations was not an obstacle for the successful applica-
tion of the RG.

In a recent work, Jurcisin & Stehlik (2006) considered the d-dimensional de-

18 The existence of a fixed point is needed for RG procedure to work appropriately,
see any standard text book on RG listed in footnote 1

24



veloped MHD turbulence. The forcing correlations for both the veloicity and
magnetic fields consisted of two parameters for the purpose of a double ex-
pansion.

The extension from white to colored noise in the forcing correlation functions
has not yet been attempted in MHD turbulence.

5 Renormalized perturbation theory (RPT)

To facilitating our comparision between RG and RPT, we now review some
of the key physics behind RPT. In closure theories for homogeneous fluid
turbulence, one typically works with the Fourier transformed NSE,

[ ∂

∂t
+ ν0k

2
]
ui(k, t) = λ0Mimn(k)

∫
d3p[um(p, t)un(k− p, t), (35)

where ν0 ≡ ν.

The incompressibility condition

knun(k, t) = 0 (36)

has been employed to eliminate the pressure field on Fourier transforming the
Poisson equation

∇2p = −∂2(unum)/∂xn∂xm. (37)

This results in the quadratic nonlinear coupling coefficient Mimn

Mimn(k) = kmDin(k) + knDim(k) (38)

where

Din(k) = δin − kikn/k2. (39)

Note the symmetry relation Mimn = Minm with kiMimn(k) = 0.

5.1 Direct interaction approximation (DIA)

Analytically, the direct interaction approximation (DIA) is a coupled system of
integro-differential equations for two descriptors of homogeneous turbulence:
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the correlation tensor U(k; t, s) defined in Eq. (20), and the response tensor
G(k; t, s) (Kraichnan, 1959). The correlation tensor is familiar from Taylor’s
statistical theory of turbulence (Batchelor, 1953), but the response tensor is
an entirely new quantity introduced by Kraichnan (1959) to analyze perturba-
tions in a turbulent flow (for a detailed treatment of DIA, the author of this
review strongly recommends the book by Leslie (1973) for its readability).
We recall the standard kinematics that leads in isotropic turbulence to the
description by a scalar correlation U(k; t, s) and response function G(k; t, s)
where k = |k|.

Because the response tensor will prove to be particularly significant for the
RG theory, we would like to begin by reviewing the reasons that led Kraichnan
to introduce it. For our purposes, all that is really relevant is the quadratic
nonlinearity in the Navier-Stokes equations, and not the tensorial nature of
the equations. Thus, the concept of the response function can be illustrated
by the simple scalar model equation

u̇(t) + νk2u(t) = Mu(t)u(t) (40)

where we have ignored the vector indices and wavevector arguments that would
appear in the real problem. In the quasinormal theory, one would simply invert
the viscous operator on the left hand side to give

u(t) =

t∫

0

ds exp[−νk2(t− s)]Mu(s)u(s). (41)

We could call G(t, s) = exp[−ν(t− s)]H(t− s) where H is the Heaviside func-
tion, the viscous response function. Of course, Eq. (41) is formally ‘exact,’ but
its use in the perturbative context of analytical theories, like the quasinormal
theory, causes the modeling of time correlations to depend on the viscosity.
This dependence is at variance with the Kolmogorov theory (Kraichnan, 1959)
However, this was only one of the problems of the theory. More seriously, it
was shown to predict negative values of the energy spectrum (Ogura, 1963,
Orszag, 1970), thus violating the principle of realizability (Kraichnan, 1959,
Orszag, 1977).

Kraichnan argued that to compute correctly, the effect of perturbations should
be analyzed by looking at the effects of adding a forcing term to the Navier-
Stokes equations. For the scalar model in Eq. (40), this means introducing a
forcing term f(s) and now solving

u̇(t) + νk2u(t) = Mu(t)u(t) + f(s), (42)

where s ≤ t and the different time argument incorporates any transient effects.
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Of course, this problem as it stands is more difficult to solve than the original
one! But if we understand that the perturbation is to be ‘small,’ then it is
reasonable to replace f by δf and ask for the small change in u, δu that is
produced by δf . This means solving the simpler linear problem in δu(t)

δ̇u(t) + νk2δu(t) = 2Mu(t)δu(t) + δf(s). (43)

The crucial physical distinction between this equation and the quasinormal
approximation based on Eq. (41) is that the frequency scale governing the
time evolution of δu is now Mu, which is expected to dominate the viscous
frequency scale νk2 in the regime of strong nonlinearity.

The ratio δu(t)/δf(s) is an exact, linearized response function. DIA achieves
closure at the level of second order statistics by replacing this fluctuating
quantity by its average, G(t, s) = 〈δu(t)/δf(s)〉, and using this deterministic
quantity to compute the response to perturbations. Averaging Eq. (43) leads
to the formal equation of motion for G,

Ġ(t, s) + νk2G(t, s) = 2M〈u(t)δu(t)/δf(s)〉 (44)

This is not a closed equation because of the correlation term on the right
hand side. DIA will assume a closure for both this correlation, and for the
third order moments in the equation for U .

At this point, one could pose the question: why close at the level of second-
order statistics? It is clear that such closure has important limitations. For
example, an interesting study by Girimaji (2005) considered the effect of a
sudden reversal of sign of the velocity modes in decaying turbulence. This
problem, or its obvious generalization in which the phases of all modes are
suddenly randomized, cannot be studied with closures that only consider sec-
ond order statistics. While closure at the level of third-order correlations, along
the lines of DIA, is indeed possible, the relevant statistical quantities, in par-
ticular the appropriate generalizations of the linear response function, are not
at all obvious. Such a theory has been described briefly by Kraichnan (1985).
We will return to this point later.

An important qualitative feature of DIA is that it depends on the triad inter-
actions that result from the convolution structure of the quadratic nonlinearity
in the Fourier representation; that is, it contains integrals with the structure

∫
dpdq δ(k− p− q) (45)

so that the effects of all possible nonlinear interactions are modeled. Kraichnan
emphasized the crucial distinction between this type of theory and the earlier
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heuristic classical closures like Heisenberg’s (Heisenberg, 1948, for example,
Batchelor, 1953; Monin & Yaglom, 1975), which treated nonlinear interactions
as if they took place between pairs of modes rather than triads. This objection
to Heisenberg’s theory had been raised decades earlier by Batchelor (1953),
although the even cruder 19 picture of a stepwise cascade remains a mainstay
of intuitive discussions of turbulence.

A second important qualitative feature is the nonlocality in time, so that
quantities at time t are expressed in terms of their evolution over the entire
interval 0 ≤ s ≤ t. Kraichnan argued that this dependence is unavoidable in
any realistic closure scheme and those closures that are entirely in terms of
single-time statistics are necessarily unrealistic. Thus, according to the DIA
theory, even if we are interested only in single-time and single-point statistics,
appropriate closures are impossible without the mediation of two-time, two-
point properties. Thus the physical realism of DIA is bought at the expense
of considerable analytic complexity.

5.2 Evaluation of DIA

Perhaps the single most important achievement of DIA, repeatedly emphasized
by Kraichnan, is that DIA is the exact statistical description of a nonlinear
stochastic problem; it is therefore realizable 20 , an obviously important prop-
erty which the quasinormal theory (Ogura, 1963 and references therein) so con-
spicuously lacked. Kraichnan gave two model problems for which DIA is exact:
a random-coupling model (Kraichnan, 1961) in which realizations of Navier-
Stokes turbulence are coupled to each other, and a generalized Langevin model
(Kraichnan, 1970, Leith, 1971; Herring & Kraichnan, 1971; Leith & Kraichnan,
1972) which we recall here for later comparison with RG:

u̇i(k, t) +

t∫

0

ds ηij(k; t, s)uj(k, s) = fi(k, t) (46)

where η is a deterministic damping factor, and f is a random force. To avoid
lengthy formulas, we only cite the DIA expression for the damping

ηij(k; t, s) = Mimn(k)
∫

dpdq δ(k− p− q)×

Mmrs(p)Pns(q)Prj(p)U(q; t, s)G(p; t, s), (47)

19 albeit useful!
20 Kramer, Majda, and Vanden-Eijnden (2003) claim that the realizability is violated
for the case of passive scalar advection with a fluctuating random sweep
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where Pij(k) ≡ (1/2)Dij (k) and note that the statistics of the random force,
fi(k, t), are also determined by the correlation function U and response func-
tion G, with

F (k̂) = 〈fi(k̂)fi(k̂
′)〉

= −4Mimn(k)Mirs(k)
∫

dp̂dq̂ Dmr(p)Dns(q)Q(p̂)Q(q̂)δ(k + k′), (48)

where Q(k̂) is given by

< ui(k, t + τ )uj(k
′, t) >= Q(k, τ )Dij(k)δ(k + k′). (49)

We again emphasize that:

(1) the damping is time-history dependent.
(2) the entire model depends on wavevector triad k,p,q satisfying k = p + q.

The second requirement is critical since it ensures that the energy balance of
the turbulent flow is preserved.

The DIA form of the Langevin equation is indeed ‘generalized:’ a true Langevin
model would have the simpler structure

u̇i(k, t) + ηij(k, t)uj(k, t) = fi(k, t) (50)

with Markovian (history-independent) damping and white-noise-in-time ran-
dom forcing. ‘Markovianized’ closures like EDQNM (Orszag, 1970; Lesieur,
1990) and TFM (Kraichnan, 1972, Leith & Kraichnan, 1972) are based on
simplified models similar to Eq. (50).

Despite incorporating much good physics in the realistic treatment of triad
interactions and the role of nonlinear temporal decorrelation, DIA has some
important drawbacks. First, DIA does not appear to be a rational approxi-
mation; although it is known that closure is possible at the level of n-point
moments for any n whatsoever, the DIA with the choice of n = 2 appears
to give the only realizable theory. A second drawback is the heavy analytical
complexity noted earlier.

The most conspicuous problem of DIA is that the predicted spectrum is not
the Kolmogorov spectrum, but instead the non-local expression

E(k) =
√

ũEk−3/2 (51)

where ũ is the rms velocity. As Leslie (1973) remarks, it is this dependence on
the large-scale excitation, a departure from Kolmogorov’s picture of a local
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inertial range energy cascade, which is more unsatisfactory even than the small
difference in spectral exponent.

5.3 DIA and inertial range

Let the real function H(ξ), defined on the semi-infinite interval 0 ≤ ξ < ∞,
have the properties

H(0) = 1, H(ξ) < 1 for ξ > 0, and

∞∫

0

H(ξ)dξ < ∞ (52)

Then standard properties of a delta function imply

λH[λ(t− s)] ∼ δ(t− s) for λ→∞ (53)

On rewriting Eq. (47) in the time domain, and evaluating the wavevector
integrals in the distant interaction approximation in which k → 0, p, q →∞,
one obtains

η(k, t, s) =
∫

k=p+q

dpdq B(k,p,q)G(p, t, s)Q(q, t, s)

∼
∫

dp {km
∂B

∂qm

(k,p,p)G(p, t, s)Q(p, t, s)

−B(k,p,p)G(p, t, s)kmpmp−1 dQ

dp
(p, t, s)}.

B(k,p,q) denotes the product of the projection operators in Eq. (47). As-
suming time stationary similarity forms

G(p, t, s)=G(pr(t− s))

Q(p, t, s)=R(pr(t− s))Q(p)

the properties Eqs. (52) of H may reasonably be postulated of the product
GR. Therefore, Eq. (53) implies that in this limit the damping is Markovian

η(k, t, s) = δ(t− s)η(k)

and the DIA response equation implies that the Green’s function is exponen-
tial,

G(k, t, s) = exp [(s− t)η(k)] for t ≥ s (54)
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Likewise evaluating the force correlation Eq. (48) in the distant interaction
limit implies that the forcing is white noise in time:

< fi(k, t)fj(k
′, s) > = δ(t− s)δ(k + k′)Fij(k) (55)

These simplifications of DIA permit analytical evaluation of the inertial range
constants. Although values of these constants could be inferred from numer-
ical solutions of DIA, say for decaying turbulence, it is natural to attempt
analytical evaluation as well.

Introducing Eqs. (54) and (55) with the Kolmogorov scaling forms

E(k) = CKE2/3k−5/3 (56)

η(k) = CDE1/3k2/3

into the DIA response equation integrated over all time separations, the result
has the form (Leslie, 1973)

C2
D

CK
∝ ũ (57)

Integrating the single time equation for the correlation function with respect
to wavenumber k leads to a second equation, which for Kolmogorov scaling
gives (Leslie, 1973)

CD

C2
K

= .1904 (58)

Thus, as explained by Leslie (1973), energy transfer in DIA is local, but tem-
poral decorrelation is nonlocal. A simple way to suppress the dependence on
the rms velocity ũ in Eq. (57) and thereby impose the locality of temporal
decorrelation, is to restrict the region of integration in the response equation
to triads satisfying p ≥ αk. Values of CD(α) and CK(α) have been evaluated
by Kabbabe (1970) and tabulated by Leslie (1973); obviously, the intervention
of α as a disposable parameter is theoretically not all together satisfactory.

5.4 Sweeping and Lagrangian theories

Kraichnan identified the physical origin of the prediction Eq. (51): at the level
of second order statistics, the use of Eulerian correlation induces sensitivity
of energy transfer to the rms excitation. This was the problem of ‘sweeping’
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described earlier. Kraichnan concluded that since Lagrangian time correla-
tions are not sensitive to the sweeping effect, a second-order statistical closure
must be formulated in terms of Lagrangian variables, not Eulerian variables
(Kraichnan, 1964).

The crucial distinction between Eulerian and Lagrangian time correlations in
turbulence was rediscovered and popularized by Tennekes (1975). The dis-
tinction can be motivated by observing that in the Eulerian frame, tempo-
ral decorrelation is due to the Eulerian acceleration, the nonlinear advection
term up∂ui/∂xp. The up term can be sensitive to the rms excitation. In the
Lagrangian frame, however, the time decorrelation is determined by the pres-
sure. But since p = ∇−2∂ui/∂xj∂uj/∂xi depends only on velocity gradients,
it is unaffected by large-scale motions.

The reformulation of DIA in Lagrangian variables led first to the Lagrangian
History DIA (LHDIA, Kraichnan, 1965a). This theory restored compatibility
with Kolmogorov k−5/3 scaling in the inertial range. However, it is an exceed-
ingly complex theory requiring four time arguments instead of two. More-
over, the derivation introduces modifications of the Eulerian formulation that
may seem hard to motivate. Further assumptions led to a simplification, the
Abridged LHDIA (ALHDIA) which required only two time arguments. But
here too, the steps taken may not seem logically compelling. Despite these ap-
parent theoretical drawbacks, computation of steady-state spectra using these
theories led to values of the Kolmogorov constant in very good agreement
with measurements (Kraichnan, 1965b) – suggesting that these theories are
reasonable even if not very attractive analytically.

A major breakthrough in the theory was Kaneda’s (1981) derivation of the
Lagrangian Renormalized Approximation (LRA), a two time argument theory
derived by a straightforward and systematic series reversion procedure. This
theory also gave very satisfactory predictions for the Kolmogorov constant.
But whereas the Eulerian two-time correlation is trivially a unique statistic,
the formulation of two-time argument Lagrangian theories like ALHDIA and
LRA, proves to permit several distinct choices of two-time correlations. Un-
fortunately, this subtle issue cannot even be formulated without considerable
explanation; suffice it to say that different versions of the LRA theory can be
formulated, differing in the choice of a ‘representative’ – Kaneda’s term for
the two-time quantity chosen.

By direct evaluation of alternative closures, Kaneda demonstrated that the
Kolmogorov constant is quite robust and not strongly dependent on the choice
of the closure scheme; nevertheless, this choice may not seem theoretically
necessary. Moreover, the introduction of Lagrangian variables appears to lose
the existence of stochastic model representations and the possibility of an a
priori proof of realizability. Finally, we have the puzzling question of whether

32



the Lagrangian theory is only required because we are specifically seeking
closure at the level of second-order statistics.

This not an entirely satisfactory situation and remains the state of the art in
turbulence closure theory. Let us summarize the main points:

(1) DIA is realizable but inconsistent with Kolmogorov’s theory.
(2) Lagrangian versions of DIA restore consistency with Kolmogorov scaling,

but unlike DIA, they are not known to be either exact closures for a sta-
tistical model, or to admit Langevin model representations that establish
their realizability. Although there is no evidence that Lagrangian DIA in
any form is not realizable, neither is there a conclusive proof that it is.

(3) DIA-based theories including the Lagrangian theories, depend on two-
time quantities and triad interactions. Both are physical necessities but
impose substantial computational burdens. These theories have never
been applied outside the simplest problems of decaying and forced steady
state turbulence.

(4) DIA-based theories do not seem to be rationally extendable to higher or-
der, more accurate theories. Closure at the level of third order moments,
for example, is formulated by Kraichnan (1985). However, even formula-
tion of the corresponding closure equations is very far from straightfor-
ward 21

, and some generalizations for the passive scalar are even demonstrably non-
realizable. An interesting alternative formulation of higher order models is the
decimation scheme) (Kraichnan, 1985)

5.5 Local energy transfer

A direct outcome of Kraichnan’s work is that the Eulerian based closure mod-
els are fundamentally incapable of avoiding the spurious dynamical effects
of sweeping on the energy transfer. As a result, a much more complex Lan-
grangian framework must be employed to recover the Kolmogorov k−5/3 spec-
trum.

This conclusion appeared to be contradicted by McComb & Shanmugasun-
daram (1984) and McComb (1990). In Fig. 14 of McComb (1995), the one-
dimensional spectrum obtained from their Eulerian local-energy transfer (LET)
(McComb & Shanmugasundaram, 1984) is compared with the predictions from
Lagrangian-history theories (Herring & Kraichnan, 1979), as well as several
sets of high Reynolds number experiments (including that of Grant et al.,

21 For the application of this method to the random coupling model of Batchov
(1966), see Williams et al., 1987, 1989a,b)
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1962). The results of the LET seemed compatible with the Kolmogorov spec-
trum.

McComb (1995) suggested that this unexpected agreement between his Eu-
lerian theory and the other Lagrangian theories is a result of the cutoffs in
the numerical procedures (see also Fig. 15 of McComb (1995)). It is possible
that this reduction to a finite number of modes could be imposing the sort of
cutoff at large scales that would suppress the sweeping effect, much like the
suggestion of Leslie (1973) noted earlier under Eq. (58).

Indeed, in opposition to the view of Kraichnan (1965) that no Eulerian theory
can possibly distinguish between convective and inertial transfer effects, Mc-
Comb & Kiyani (2005) focused on how to suppress the divergence that leads to
Eq. (57) in an Eulerian context. To this end, the LET was reformulated using
a renormalized response function connecting two-point covariances at different
times (Kiyani & McComb, 2004). The resulting relationship was first special-
ized by chosing the initial conditions in the form of a fluctuation-dissipation
ralation. The new derivation of LET was shown to contain a counterterm which
removes the singularity of previous propagator equations. Another specializa-
tion, assuming exponential two-time dependence, was made to show that the
LET closure is well behaved in the limit of infinite Reynolds number.

6 RG Procedure

6.1 A simple cartoon for multiple-scale eliminations

In RG, one partitions the unresolvable subgrid scales [kc, k0] into shells, char-
acterized by a scale factor f , 0 < f < 1 (f = 1−h). The portion of the spectral
scales that one would like to elmininate is partitioned by the wave number set
kc ≡ kN = fNk0, kN−1 ≡ fN−1k0, ...., k1 = fk0, k0. k0 is typically chosen to be
on the order of the Kolmogorov dissipation wave number (2π/LK), while kc is
the wave number which separates the actual resolvable scale k < kc from the
unresolvable scales kc < k ≤ k0.

The RG iterative procedure consists of first eliminating the highest wave num-
ber subgrid shell k1 < k ≤ k0 from the Navier-Stokes equation for the remain-
ing ”supergrid” wavenumbers k < k1.

ui(k, t) =

{
u>

i (k, t) if k1 < k < k0,
u<

i (k, t) if k < k1,
(59)
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For k < k1, the resolvable scale Navier-Stokes equation is

[ ∂

∂t
+ ν0k

2
]
u<

i (k, t) = λ0Mimn(k)
∫

d3p[u<
m(p, t)u<

n (k− p, t)

+ 2u>
m(p, t)u<

n (k− p, t)︸ ︷︷ ︸
A

+u>
m(p, t)u>

n (k− p, t)︸ ︷︷ ︸
B

], (60)

The strength of the nonlinear interaction is denoted by λ0, a formal order-
ing parameter for perturbation theory, which is eventually set to unity. It is
convenient to label the kinematic viscosity ν ≡ ν0.

For the subgrid scales, k1 < k < k0, we have

[ ∂

∂t
+ ν0k

2
]
u>

i (k, t) = λ0Mimn(k)
∫

d3p[u<
m(p, t)u<

n (k− p, t)︸ ︷︷ ︸
I

+2u>
m(p, t)u<

n (k− p, t)︸ ︷︷ ︸
II

+u>
m(p, t)u>

n (k− p, t)︸ ︷︷ ︸
III

]. (61)

The RG multiple-scale elimination schemes can be illustrated by a simple
cartoon. The formalism introduces a cutoff wavenumber k1 which is initially
around the Kolmogorov scale. Again dropping the indices and wavevector
arguments for the sake of clarity, we rewrite the Navier-Stokes equation (Eqs.
(60 and (61))as

G<u< −M(u<u< + u<u> + u>u< + u>u>) = f< (62)

G>u> −M(u<u< + u<u> + u>u< + u>u>) = f> (63)

The resolvable scale propagator is now denoted by G< ≡ (∂/∂t + νk2)−1,
for k residing in the resolvable scales and the corresponding subgrid scale
propagator is given by G> ≡ (∂/∂t + νk2)−1, with the wavenumber k in the
subgrid shell. ν is the renormalized eddy viscosity (although in the first subgrid
shell elimination it is just the molecular viscosity ν0 = ν).

Formally, the u> modes are eliminated from Eq. (62) by solving for u> using
Eq. (63). This is found to result in the replacement of the viscosity in Eq.
(62) by an enhanced viscosity. Another effect is the generation of the triple
product of the resolvable scale velocity fields, u<u<u<.

In the process of removing next subgrid shell, the modification to the Navier-
Stokes equation are (a) a renormalized eddy viscosity coefficient, ν(k) =
ν>>(k) + ν><(k) from both double and triple velocity products and (b) a
new triple nonlinearity in the renormalized Navier-Stokes equation.
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One now proceeds iteratively, removing at the i-the step the subgrid shell
ki < k < ki−1 and continues with this subgrid shell elimination until one
reaches the actual resolvable scales at the N -th step 22 .

6.2 Comparison with DIA

It should be noted that the formal RG procedure is essentially identical to
the closure procedure of DIA, the so-called ‘one-loop’ line-renormalization
perturbation theory (Orszag, 1977). This procedure is applied incrementally
in RG, but ‘all at once’ in DIA (Kraichnan, 1987a). Symbolically, the steps
can be written as

M(k)u(p)u(q)→M(k)G(p)M(p)u(k)u(−q)u(q) = ν(k)u(k) (64)

by substituting G(p)M(p)u(k)u(−q) for u(p). The result is the formal effective
viscosity ν(k) =

∫
dpdqM(k)G(p)M(p)u(−q)u(q).

Our purpose here is not to justify this formalism, but only to note that it
occurs in both theories. In this respect, RG on the one hand contributes noth-
ing new, but on the other hand it does follow a well-established formalism.
Nevertheless, it is reasonable to ask whether the incremental elimination of
modes makes the procedure more rigorous because removing a ‘small’ range of
modes might be thought of as a small perturbation. Although this argument
has been denounced repeatedly, it should be noted that a related idea does ap-
pear in one of Kraichnan’s derivations of DIA, namely, in the argument that
any one triad interaction weakly perturbs the totality of triad interactions
(Kraichnan, 1961). DIA may be understood as a non-standard perturbation
theory in which the basic state is unknown, but is determined self-consistently
by requiring the validity of this perturbation hypothesis. Curiously, this argu-
ment seems more appropriate if the modes are indeed eliminated all at once
rather than incrementally. Nevertheless, it seems reasonable to conclude that
the incremental elimination of modes in RG by itself is neither more nor less
‘rigorous’ than the closure procedure adopted in DIA. 23

22 Zero helicity is assumed here. For the effect of the helicity on renormalized eddy
viscosity, see Zhou, 1990.
23 We could perhaps note that if ‘rigorous’ derivation is understood to require deriva-
tion from the Navier-Stokes equations alone, ‘rigor’ is impossible: one might as well
demand the derivation of thermodynamics from Newton’s laws alone. That is not
to deny the possibility or desirability of more plausible or convincing statistical
hypotheses than those of current turbulence theory.

36



6.3 Justification for incremental mode elimination

Rose (1977) attempted to offer a rationale for removing the subgrid scale incre-
mentally. While his original discussion was given for a model scalar equation,
it will instead be repeated here for the Navier-Stokes equation. Essentially, in
order for the RG procedure to work, the effective Reynolds number should be
less than one. For a cutoff wavenumber kc, let V 2

c denote the energy of the ve-
locity modes in the neighbourhood of this wavenumber. The approximation of
RG would be untenable if ν0 is not small enough, since the effective Reynolds
number

Vc/kcν0 (65)

would be much greater than one.

Rose (1977) reasoned that if one could solve for the subgrid modes in terms
of the resolvable modes in such a way that the eddy viscosity replaces the
kinematic viscosity in Eq. (65) then the effective Reynolds number would be
significantly lowered. This can be partially realized by regarding the ultimate
subgrid model as the product of two subsidiary calculations (as an illustration,
(kc, (1/2)k0) and ((1/2)k0, k0)).

To remove the first subgrid shell, the kc in Eq. (65) is replaced by one with an
uppper cutoff of (1/2)kd. The molecular viscosity is enhanced by the factor

kd∫

(1/2)kd

E(p)dp]1/2 � Vc,

As a result, the effective Reynolds number Re is reduced.

Next, the second calculation models away the modes between (1/2)kd and k0.
The effective Reynolds number is again smaller because the molecular viscosity
is replaced by the enhanced eddy viscosity.

Rose (1977) pointed out that the above process, whereby the subgrid model
is produced in two stages, can be further subdivided by eliminating all of
the subgrid modes in several stages. When all the subgrid shells have been re-
moved, the effective viscosity attains its final value, of order Vc/kc. In this way,
the effective Reynolds number for the removal of a particular shell is always of
order unity, and the final subgrid model has been constructed through the use
of a series of uniformly valid approximation (Rose, 1977). A similar argument,
that a ‘renormalized Reynolds number’ based on an effective viscosity is O(1),
is made by YO, although this value is not necessarily numerically small.
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7 First Applications of RG to Fluids

This section summarizes several papers that have applied the RG incremental
elimination procedure to stirred fluid motion 24 . The correlation function of
the forcing offerred these authors the freedom to introduce a parameter 25 , ε.
Now the RG multiple scale elimination procedure describled in the previous
subsection will be coupled with the perturbation expansion in this parameter
ε.

The work of Forster, Nelson, & Stephen (FNS) carried out the RG procedure
following Ma & Mazenko (1975) 26 . It should be noted, however, that all three
forcing correlation models considered in FNS are not directly relevant to the
turbulent flows of high Reynolds numbers. This fact will become clearer when
the three forcing models are reviewed in the next subsection. DeDominicis &
Martin (DeDm 1979) attempted to alleviate one of the limitations in FNS by
connecting the forcing correlation to the Kolmogorov energy spectrum.

Kraichnan (1982) remarked that the RG procedure, as carried out by FNS
and DeDM, does not offer anything more than the closure theories such as
that of DIA. In response, Fourier & Frisch (1983) (FF henceforth) took one
step further by obtaining a direct relationship between the factor in front of
the Kolmogorov spectrum and the strength of the forcing correlation function.

7.1 Forster, Nelson, & Stephen

Forster et al. (FNS) applied the RG procedure to a stirred fluid. The forcing
autocorrelation function was assumed to take the form

< fi(k, ω)fj(k
′, ω′) >= F (k)δ(k + k′)δ(ω + ω′)(δij − kikj/k

2), (66)

where various choices are made for the function F (k).

Specifically, three models were investigated:

Model A:

24 Martin et al. (1973) and Nelkin (1974) were the first who discussed the feasibility
in applying the RG methods to turbulent flows
25 Depending on the authors, this perturbation parameter may be introduced in a
slightly different way
26 Note that Ma & Mazenko (1975) focused their attention on the dynamics of an
isotropic ferromagnet - a system that falls within equilibrium statistical statistical
mechanics and the evaluation of partition functions
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F (k) =
{

D0k
2 if |k| < Λ,

0 otherwise,
(67)

Model B:

F (k) =
{

D0 if |k| < Λ,
0 otherwise,

(68)

and finally,
Model C:

F (k) =

{
D0 if Λ < |k| < Λ,
0. otherwise,

(69)

Here Λ is a cutoff wavenumber and D0 is a forcing amplitude.

Model A can be considered simply as a Langevin model for a fluid near equi-
librium. In this case the fluctuation-dissipation theorem requires the forcing
amplitude D0 = ν0kBT/ρ. It can also be thought of as representing some
macroscopic stirring force whose spatial integral vanishes. Model B includes a
statistically defined force which acts on the fluid even at k = 0. While it is
perhaps somewhat artificial to imagine exciting a fluid even at k = 0, Model B
does exhibit intriguing behavior below four dimensions 27 . Model C is perhaps
the most realistic. The fluid is excited in a band in k space below k = Λ, and
one is interested in the resulting correlations near k = 0.

FNS showed that the infrared behavior of Model C is the same as that of Model
A, which is a further motivation for considering Model A . Model A generates
the familiar long-time tails in the renormalized viscosity, and produces new
singularities at small wavenumber as well.

FNS found that a kind of universality applies. Large classes of models exhibit
similar infrared, long-time properties. The most ”realistic” models all exhibit
a spectral density function E(k) which scales as kd−1 for small wavenum-
bers, where d denotes the dimensionality. This agrees with a result obtained
by Saffman (1967) for homogeneous isotropic turbulence. FNS stressed that
their considerations refer to the region of effectively small Reynolds’ number,
and E(k) ∝ kd−1 is simply a consequence of equipartition and phase-space
considerations.

Finally, FNS also remarked that Model B leads to rather different results at
small k. Here nonlinearities dominate the infrared behavior of E(k) below four
dimensions, and lead to logarithmic anomalies for dimension d = 4.

27 Heuristically, it corresponds to a macroscopic “shaking” of the fluid container.
FNS credited this interpretation to P.C. Martin.
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7.2 DeDominicis & Martin

DeDominicis and Martin (1979, DeDM) considered the singular case of a ran-
dom stirring force in which equal weight is given to all wave vectors, i.e.,
a force characterized by a noise correlation essentially proportional to k−d.
DeDM showed that this stirring force yielded a Kolmogorov spectrum. This
derivation of the Kolmogorov spectrum depended on a special noise force cor-
relation and did not address the central issue of why such a spectrum, or
one that does not deviate greatly from it, should be found in experiments on
strong turbulence (DeDM). Nevertheless, the model may provide a concrete
starting point for quantitatively studying discrepancies from the Kolmogorov
predictions, and how universally they apply.

To avoid uninteresting infrared divergences, DeDM take a white noise random
force whose only nonvanishing cumulant is

< ff >≈ D0k
4−d(m2

0 + k2)−y/2 (70)

where m−1
0 is a stirring length (infrared) cutoff. DeDM paid special attention

to the asymptotic domain in which

m0� k � Λ, (71)

and eventually let the untraviolet cutoff Λ tend to infinity. In this limit, for
any y ≤ 4 (and d > 2), the energy spectral function of FNS can be generalized
to

E(k) ≈ k1−2y/3. (72)

The Kolmogorov behavior for the spectral function is approached as y ap-
proaches 4 from below (i.e., y → 4−), for the region which is ultraviolet with
respect to m0 and infrared with respect to Λ.

7.3 Fourier & Frisch

Fourier and Frisch (hereafter FF) focused their attention on the forcing cor-
relation function, assuming the F (k) in Eq. (24) has the form

F (k) = 2Dk3−ε (73)
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F (k) is the amount of energy injected per wavenumber and D is the forcing
amplitude. When ε is positive and small, the resulting energy spectrum for
the turbulence is

E(k) ∝ k1−2ε/3, (74)

- although this is basically a dimensional scaling result and can also be ob-
tained from DIA. This is exactly the argument offered by Kraichnan (1982),
who argued that the RG method (in the work of FNS and DeDM) is in no
way superior to standard closure methods.

To counter Kraichnan’s point, FF went beyond the previous work by deriving
more quantitative information than just determining the scaling of the energy
spectrum. As noted by FF, previous RG calculations did not attempt to eval-
uate the proportionality constant in the power law; indeed, in other physical
problems to which RG methods have been applied, these constants were not
even universal.

FF wrote down the forcing correlation function in (k, ω), where the energy
injection spectrum F (k) has the power law Eq. (73). When ε > −1, this
corresponds to the generalization of model B of FNS. In the borderline case
of ε = −1, the assumed injection spectrum corresponds to model A of FNS.
The purpose of FF was to calculate the statistical properties of the solution
of NSE at a fixed wavenumber and a fixed viscosity ν0 > 0 as ε→ 0.

FF assumed the equivalence

E(k; ν0,D,Λ0) = E(k; ν(Λ),D,Λ), (75)

and required that ν(Λ) and ν(Λ0) ≡ ν0 be related by

ν3(Λ)− ν3(Λ0) = 3C3ε
−1(Λ−ε − Λ−ε

0 ), (76)

where C3 = 1/10π2.

In the ε→ 0 limit, the renormalized Reynolds number is small and FF calcu-
lated E(k; ν(Λ),D,Λ) using the linear approximation

E(k; ν(Λ),D,Λ) ≈ 2Dk3−ε

2ν(Λ)k2
(77)

where k ≤ Λ = O(1). The final result was

E(k; ν0,D,Λ0 =∞) ≈ D2/3(3C3)
−1/3ε1/3k1−2ε/3 (78)
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in the limit ε→ 0. The amplitude in front of the powerlaw k1−2ε/3 was deter-
mined explicitly in terms of ε and D.

The FF result is universal in the sense that – under the assumptions made –
it does not depend on the molecular viscosity or on the small scale forcing.

8 ε-RG

8.1 ε-RG procedure

Building on the work of FF just described, YO extended both the theory
and the applications suggested by these predecessors. In this Section, YO’s
notation will be used for space-time Fourier transforms

k̂ = (k,Ω) p̂ = (p, ω) q̂ = (q,Ω− ω)

The triadic condition k = p + q will be assumed to hold throughout our dis-
cussion; the notation insures the corresponding frequency matching condition.

The starting point of YO’s analysis is the Navier-Stokes equations in d-dimensional
space driven by a random force f :

(−iΩ + ν0k
2)ui(k̂)−Mimn(k)

∫
dp̂ dq̂ um(p̂)un(q̂) = fi(k̂) (79)

The time Fourier transform indicates that the analysis assumes time stationar-
ity as well as spatial homogeneity. The random force is assumed to be Gaussian
with correlation function

〈fi(k̂)fj(k̂
′)〉 = 2D(2π)d+1k−yDij(k)δ(k̂ + k̂′) (80)

Note that this force is white noise in time. Its spatial correlation depends on
the amplitude D and y is a scaling exponent that is treated as a variable for
the purposes of the subsequent ε-expansion.

The mode elimination procedure of Section 6 is implemented, ıwithout re-
taining the triple nonlinearity. Iterative mode elimination then generates a
momentum equation of the same form but with an enhanced viscosity which
is found to satisfy the recurrence relation

dν(k)

dk
= A

D

ν2kε−1
(81)
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where A is computed explicitly by the theory and

ε = 4 + y − d. (82)

The energy spectrum has the form

E(k) = C4D
2/3k−5/3+(4−ε)/3, (83)

where C4 is given explicitly by the theory.

YO’s conclusion is that the nonlinear term the Navier-Stokes equation can
be replaced, in the limit of infinite Reynolds number, by the combination of
random forcing fi and a scale dependent viscosity ν(k), so that

−iΩui(k̂) + ν(k)k2ui(k̂) = fi(k̂) (84)

At this point, the scaling exponent of the forcing y in Eq. (80) must be con-
sidered, and this brings us to the heart of the YO theory. Substituting y = d
in Eqs. (81) and (83) gives the scaling laws

ν(k)∼D1/3k−4/3 (85)

E(k)∼D2/3k−5/3 (86)

which coincide with Kolmogorov scaling if D can be identified with the energy
flux E. Note from the definition Eq. (82) that y = d corresponds to ε = 4.

But the crucial observation is that the nonlinear coupling in the suitably
rescaled Navier-Stokes equations is proportional to

√
ε in the limit k → 0.

Turbulence driven by a force for which ε = 0 is therefore asymptotically linear
(in the largest scales of the motion). An expansion about ε = 0 in powers of ε
appears to be that great desiridatum of turbulence theory: a rational expansion
in powers of the nonlinear interaction. The introduction of this expansion went
well beyond closure theories like DIA. Although the expansion is motivated
by analogous ideas in the theory of critical phenomena, where similar RG
procedures have achieved remarkable results for several physical systems in
equilibrium (see review articles on the applications of RG to Ising model,
for example), its application to turbulence (a system far from equilibrium)
requires independent justification.

To summarize, ε = 4 gives us the Kolmogorov scaling regime of interest, while
ε = 0 will provide the focal point for perturbation expansions. However, for
this case of ε = 0
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ν(k) ∼ k0 (87)

E(k) ∼ k1 (88)

Eq. (87) restates the observation made earlier: since the effective viscosity ν(k)
that accounts for the effect of nonlinear interactions is constant at large scales
when ε = 0, any nonlinearity must necessarily be very weak. This observation
again supports the idea that the ε-expansion is an expansion in powers of the
strength of the nonlinearity.

We now would like to summarize some of the conclusions resulting from this
expansion procedure. They will address the questions raised earlier about DIA-
based analytical closures.

8.2 Higher order nonlinearities

Exact mode elimination using Eqs. (62) and (63) will generate an infinite
set of nonlinear terms of higher order than appear in the quadratically non-
linear Navier-Stokes equation. However, in the YO theory, the nonlinearity
remains quadratic. YO justified this radical simplification on the basis of the
ε-expansion: it was stated that all the higher order nonlinearities scale as
(powers of) k4−ε. Hence, if ε < 4, these higher order nonlinearities → 0 in
the large-scale limit k → 0. Although it is true that when ε = 4, these higher
order nonlinearities are O(1), YO argued that their effect could be expected
to be small as ε→ 4−.

A related statement by YO is that their expansion need not go beyond the
quadratic terms in the coupling constant because these terms are of higher
order in ε. Without presenting the details, we simply point out that this ‘one-
loop’ order of perturbation theory appears in both the YO theory and in DIA.
This comment, together with the irrelevance of higher order nonlinearities for
ε < 4 and k → 0, appears to give some rationality to YO’s form of closure:
‘higher order’ closures of the type sketched by Martin et al (1973) only generate
small corrections in ε. Of course, ε = 4 is still a sticking point.

8.3 Triad interactions and time-history dependence

YO’s effective viscosity ν(k), like the DIA factor η(k), is an ‘eddy damping’
factor due to nonlinear interactions. But the first thing to note is that the triad
interactions that appear in the definition of η in Eq. (43) do not appear in
the YO theory expression Eq. (81), which involves only the wavenumber argu-
ment k. Moreover, YO’s damping is purely Markovian: in the time stationary
context of the YO theory, this is reflected in the absence of any frequency
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dependence in ν. It should perhaps be noted that such dependence on a single
wavenumber is the common property of all RG theories 28 .

A vast reduction in analytical complexity is thus achieved. Its origin can again
be sought in the ε-expansion, because in the limit ε = 0, the energy spec-
trum peaks at small scales. Moreover, as Kraichnan (1987) has observed, this
peaking of the energy spectrum at small scales indicates the dominance of
asymptotically distant triadic interactions.

8.4 Eulerian vs. Lagrangian theory

Finally, YO is strictly an Eulerian theory: no mention of Lagrangian variables
is made, and mode elimination is carried out on the complete nonlinear term
including the advection term, not merely the pressure term. Yet, the YO the-
ory is consistent with Kolmogorov scaling. YOS (Yakhot et al., 1989) sought
to justify this conclusion using the ε-expansion: ‘sweeping’ interactions were
claimed to be negligible compared to local straining interactions when ε = 0,
and the ε-expansion was invoked to assume that this same conclusion will con-
tinue to hold in the Kolmogorov limit ε = 4 (see Sec. 10 for a detailed study
on this claim).

8.5 Evaluation of inertial range constants

An important application of the ε-expansion was in the evaluation of ‘inertial
range constants:

E(k)=CKε2/3k−5/3, (89)

η(k)=CDε1/3k2/3. (90)

Here, CK and CD are the constants that enter the Kolmogorov scaling. CK

in Eq. (89) defines the famous ‘Kolmogorov constant’. Its derivation is rightly
regarded as an important test of a turbulence theory: while dimensional anal-
ysis alone can give the k−5/3 scaling law, no similar elementary consideration
will recover the value of CK. Eq. (90) defines a second constant, which unfor-
tunately has no standard name or notation and a dearth of measured values.
It is related to the two-time properties of homogeneous isotropic turbulence.
These constants had been computed earlier by Kraichnan (1964) and Kaneda

28 Note that the eddy viscosity here is computed after the distant interaction limit.
The spectral eddy viscosity of the recursive RG in Sec. 12, without the distant
interaction limit, results from triadic interactions
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(1981) by numerical integration of Lagrangian closure theories. We also noted
Kabbabe (1970) and Leslie’s (1973) computation using DIA with an ad hoc
cutoff at large scales. On the other hand, the calculation in YO is particularly
simple.

9 Perspectives on ε-RG

This section will review some of the criticism that have been raised against
the YO theory.

9.1 Higher order nonlinearities

YO’s claim that the higher order nonlinearities are negligible was contradicted
by Eyink (1994), who determined that, on the contrary, higher nonlinearities
always scale as k0 rather than k4−ε. In this case, these higher nonlinearities
cannot be said to be small in any perturbative sense: in the statistical me-
chanical language of this debate, the higher order nonlinearities are always
‘marginal,’ never ‘irrelevant’. The crucial claim is that this conclusion holds,
even at ε = 0. Readers can evaluate the arguments for themselves by reference
to the original articles. But if higher order nonlinearities are indeed marginal
even when ε = 0, we return to the situation of DIA-based closures: higher
order nonlinearities are simply ignored (or retained) depending on how the
theory is constructed; no general principle governs their inclusion or exclu-
sion. The neglect of these nonlinearities in the YO theory simply reflect an
assumption which cannot be further justified.

9.2 Triad interactions and time history dependence

The role of triad interactions in the YO theory is rather subtle. On the one
hand, the eddy viscosity is constructed without explicit consideration of triadic
interactions; this type of approximation was shown by Kraichnan (1987a) to
occur when replacing general nonlinear interactions by distant interactions
such that k � p ≈ q. On the other hand, the energy balance in YO was
taken from RPT (Dannevik et al., 1987) in which triad interactions appear
explicitly 29 .

29 Specifically, Dannevik et al. linked YO ε-RG with the eddy-damped-quasi-normal
Markovian (EDQNM) approximation
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Indeed, the energy flux balance cannot be obtained correctly without the con-
sideration of triadic interactions: this point will be discussed in Section 9.4.
The prominence given by the YO theory to distant interactions suggests analo-
gies to the classical Heisenberg model (Batchelor, 1953) and various other pro-
posals (Canuto et al., 1987; Canuto & Dubovikov, 1996; Rubinstein & Clark,
2004). Kraichnan (1987a) had already shown that such approximations result
from replacing general nonlinear interactions by distant interactions such that
k � p ≈ q.

Yet both analytical closure (Kraichnan, 1976) and DNS data (Zhou, 1993a,b,
Gotoh & Watanabe, 2005) suggest that asymptotically distant interactions
are not in fact dominant, but instead it is the slightly elongated wavevector
triads with the maximum to the minimum side ≈ 2 which are responsible for
most of the energy transfer. This led Kraichnan (1987b) to ask whether the
Kolmogorov constant, apparently computed by YO using a theory based on
distant interactions, might be insensitive to local interactions.

Thus, one observes that even if the nearly local interactions dominate energy
transfer this does not necessarily rule out a reasonably accurate description of
the effective energetics of turbulence using a simplified one variable model 30 .
The models of Canuto & Dubovikov (1996) and Rubinstein & Clark (2004)
both attempt a compromise by adding a ‘backscatter’ term to represent local
interactions. The recursive RG model of Zhou et al. (1988, 1989) and Zhou &
Vahala (1993a,b) is a different attempt to represent the effect of local interac-
tions by introducing a higher-order nonlinearity. This fundamentally different
formulation of the renormalization group will be discussed in more detail else-
where in this review.

9.3 The ‘correspondence principle’

Whereas it is generally agreed that Eq. (79) provides a plausible model of
isotropic turbulence provided the random force f is concentrated at large
scales and therefore provides an energy source, the introduction of a force
acting on all inertial range scales appears to lack fundamental justification.
YO’s model Eqs. (79)–(80) can be compared to the DIA Langevin model
(Kraichnan, 1976), written here in a time stationary form,

−iΩu(k̂) + η(k̂)ui(k̂) = fi(k̂) (91)

30 see Kraichnan and Spiegel, 1962
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where the damping function and force correlation are expressed in terms of
the DIA response and correlation functions G and Q by

η(k̂) = 2iMrmn(k)
∫

dp̂ dq̂ δ(k̂ − p̂− q̂)Dmr(p)Dns(q)G(p̂)Q(q̂) (92)

and

F (k̂) = 〈fi(k̂)fi(k̂
′)〉 = −4Mimn(k)Mirs(k)∫

dp̂ dq̂ δ(k̂ + k̂′)Dmr(p)Dns(q)Q(p̂)Q(q̂)δ(k + k′) (93)

Eq. (91) is a generic model in statistical mechanics which replaces the effects of
an infinity of nonlinear interactions on any one mode by a random force acting
against a generalized damping. The “fixed point” RG model Eqs. (80) and (84)

formally resembles the DIA Langevin equation model. But the damping ν(k)k2

in the RG model Eq. (80) is Markovian, so that

η(k̂) = η(k) (94)

only and the forcing in Eq. (84) is white noise in time, so that

F (k̂) = F (k) (95)

only. Neither of these conditions holds for the DIA Langevin model.

To investigate the connection between these models, we follow Kraichnan to
write

Q(p̂) = Q(p)R(p̂), (96)

where R is the time correlation function. We now perform the frequency in-
tegration in Eq. (93) and evaluate the result in the long time limit in which
Ω = 0. This limit corresponds to observing the system over times long com-
pared to any characteristic correlation time of the true DIA random force.
The result is

F (k̂) = −4Mimn(k)Mjrs(k)
∫

dp̂ dq̂ Dmr(p)Dns(q)Q(p)Q(q)Θ(k, p, q)(97)

where

Θ(k, p, q) =

∞∫

−∞

dωR(p̂)R(q̂) |Ω=0 (98)
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In this limit, the random force is white in time. Further, in Kolmogorov scaling,

Q(λp) =λ−11/3Q(p) (99)

Θ(λk, λp, λq) =λ−2/3Θ(k, p, q) (100)

consequently, the scaling dimension of the random force is found to be -3:

F (λk) = λ−3F (k) (101)

Formally, in the long time limit, the random force in the DIA Langevin model
has the same space-time correlation as the force postulated at the outset by
YO.

It should be noted that the power counting which leads to Eq. (101) is purely
formal, since the actual force correlation integral in Eq. (93), like the integral of
Eq. (92), diverges when evaluated by itself for an infinite Kolmogorov inertial
range. In the energy flux balance, these divergences cancel, as required by the
locality of energy transfer in the theory.

That the -3 force is natural in the context of any steady state far from equi-
librium with a constant flux of some invisicid invariant is also suggested by
the derivation (Rubinstein, 1994a) of Bolgiano scaling inertial range for buoy-
ant turbulence by applying the YO formalism with forcing of the temperature
equation only. From this point of view, the introduction by Lam (1992) of a
distinguished infrared scale in the RG force is not necessary: locality means,
as in the computation of DeDM, that when this scale becomes infinite, the
results of the theory remain finite. This is simply the analytic statement of
Kolmogorov’s idea of locality of the inertial range.

9.4 Energy balance via the forcing correlation

As we have mentioned before, Fourier & Frisch (FF) were the first to determine
the coefficient in the energy spectrum. Specifically, recall that FF found that
the forcing strength D appears with the 2/3 exponent (D2/3) in the energy
spectrum. While this energy spectrum has a −5/3 scaling (k−5/3) in spectral
space, technically it is not yet a Kolmogorov spectrum because the coefficient
is not propotional to the dissipation rate E with the 2/3 exponent (E2/3).
This missing link between FF and the Kolmogorov spectrum was provided
in YO’s evaluation of the Kolmogorov constant, through a relation between
the stirring force amplitude D and the dissipation rate. This was also done
in YO, where the DIA energy balance was invoked. Later, Dannevik, Yakhot
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& Orszag (1987) re-established this result by showing that EDQNM could be
deduced as a correction to the lowest order description given by Eq. (79). The
required proportionality is

D = 15.633E (102)

McComb (1990) objected that the direct integration of the correspondence
equation model does not lead to this result because integration of the k−3 force
leads to a logarithmic integral. According to McComb (1990), this leads to an
unrealistically small interval of validity of the theory. From this viewpoint, the
necessity to correct Eq. (79) in order to obtain the correct energy flux balance
perhaps requires an explanation.

In Dannevik, Yakhot & Orszag (1987), the relationship between the forc-
ing strength and the dissipation rate is obtained by constructing an energy
transfer function. However, the starting point for building this energy transfer
equation is from the ε RG generated Navier-Stokes equation. Recall that the
eddy viscosity was obtained by both ε expansion and by neglecting local in-
teractions. To get the second order energy equation, another expansion of the
velocity field was made in term of order parameters (O(ε0, ε1/2, ....). The final
energy transfer equation is the same as that of the EDQNM model. The issue
of why the energy balance is not obtained in the YO theory directly from the
correspondence principle will be discussed further later.

9.5 The ε-expansion and the distant interaction approximation

The ε-expansion has been reconsidered in a number of references including
Ronis (1987), Teodorovich (1987, 1993, 1994), Lam (1992), and Wang & Wu
(1993). In YO’s original presentation, the ε-expansion is an expansion about
a logarithmically divergent theory. An interesting alternative was suggested
by Carati (1990a), who suggested expanding about a theory with vanishing
energy transfer (Fournier & Frisch, 1978). Here, this expansion will be con-
sidered, following Woodruff (1992, 1994, 1995) and Rubinstein (1994b), as an
approximation in DIA.

To complete the transition from the DIA Langevin model to the YO theory,
further approximations are required. They are

(1) evaluate the DIA integrals in the distant interaction limit in which k/p, k/q →
0

(2) Markovianize the damping
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(3) introduce an infrared cutoff so that the integrals in Eqs. (92),(93) are
restricted to p ≥ k and q ≥ k only

(4) evaluate the amplitudes using the ε-expansion

It has been emphasized by Woodruff that these approximations are closely
related. First, as noted by Kraichnan (1987), the ε-expansion is an expansion
about a theory in which distant interactions are dominant; accepting this
point provisionally, we outline how the distant interaction limit brings about
the Markovianization of the damping and forcing.

The ε-expansion can be considered as a method of infrared regularization by
analytic continuation. Namely, we now replace Eq. (56) by the general form

E(k) = CKD2/3k1−2ε/3 (103)

The scale independence of the integrated response equation demands

η(k) = CDD1/3k2−ε/3 (104)

The units of D, consistent with Eq. (80), make these equations dimensionally
correct. Substituting these scalings in the integrated response equation gives
the ε-dependent form of Eq. (57),

C2
D

CK
=
∫

dp̂ dq̂ 2iMrmn(k)Dmr(p)Dns(q)
p−1−2ε/3

(p2−ε/3 + q2−ε/3)k2−ε/3
(105)

The integral in Eq. (105) is ultraviolet divergent when ε < 0 and is logarithmic
when ε = 0. Woodruff observes that it is reasonable to evaluate Eq. (105) for
ε > 0 by asymptotic expansion about ε = 0. This expansion greatly simplifies
the integration since the ultraviolet divergence for ε < 0 implies that the
integral is dominated by distant interactions, namely by wavevector triangles
such that p, q →∞. In this limit, a simple analytical evaluation of the integrals
is possible. The calculation gives

C2
D

CK
=

1

ε
A(ε) =

A−1

ε
+ A0 + A1ε + · · · (106)

where

A−1 =
3

5

The constant A−1 is distinguished since it is the only one in the series Eq.
(106) which has been evaluated exactly in two senses. First, increasing the
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number of “loops,” that is, considering terms in the perturbative solution of
the Navier-Stokes equations with a larger number of force correlations, will
correct An only for n ≥ 0. It can also be shown (Rubinstein, 1994b) that
even at the one loop level, correcting the distant interaction approximation by
power series expansions in k/p also only corrects An for n ≥ 0. Accordingly,
it is reasonable to evaluate Eq. (106) by taking the leading term only. Setting
ε = 4,

C2
D

CK
=

3

20

which is equivalent to YO’s calculation.

It is sometimes claimed that YO evaluate the inertial range constants by
setting ε = 4 and ε = 0 at different places in the same equation. However,
it must be emphasized that in the calculation given here, ε is never set to
any value but 4. The analytical procedure which leads to Eq. (106) is entirely
routine: it is the evaluation of the leading term in an asymptotic expansion,
not a novel procedure unique to YO.

The ε-expansion can be considered to be a regularization necessary to evaluate
the right side of Eq. (57), which diverges when p→ 0. Triads with p ∼ 0, q ∼ k
correspond to sweeping of modes with wavevector | k |= k by modes of much
larger scale. The dynamic significance of this divergence has been elucidated
by Kraichnan (1982). This divergence is removed in YO, and indeed in several
renormalization group approaches by focusing exclusively on interactions for
which p, q ≥ k.

However, as Woodruff notes, the integral becomes infrared divergent when
ε = 3, and so the analytic continuation from ε = 0 to ε = 4 in the YO
theory becomes quite problematic: this observation can also be attributed
to DeDM. Thus, although it is satisfying to be able to compute the inertial
range constants, and even to obtain satisfactory values by a straightforward
computation, the fact remains that the analytic continuation which underlies
the calculation lacks serious justification. Moreover, Woodruff also suggests
that one might attempt an ε expansion about this infrared divergence. Not
unexpectedly, the results are quantitatively unsatisfactory, but this possibility
suggests that the expansion about ε = 0 may not be the only possibility. We
can conclude that the idea of finding a good point about which to expand is
potentially fruitful, it may be that the choice in YO is by no means optimal.

Another objection to this procedure can be raised in connection with Eq. (58):
the constant has been obtained by exact evaluation of the triangle integrals
making neither the ε-expansion nor the distant interaction approximation.
Again one should also look back at the observations of McComb (1990) noted
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earlier (see subsection 9.4). Now the integral can be shown to be ultraviolet
divergent for ε < 4 and logarithmic exactly when ε = 4. Thus, there is no
possibility of an ε expansion for this integral. There is no alternative but to
evaluate it exactly.

Another expansion method was proposed by Carati (1990b), where the pa-
rameter ε is no longer treated as a small parameter but is fixed at its ”final”
value ε = 4. Indeed, the frequency correlation provides a required free param-
eter through the powerlaw exponent ε′/3 where −1 < ε′ < 1. The original
YO’s ε-expansion is now replaced by arguing that the frequency integral is
nearly divergent because of the assumed value of ε′. Thus the ε-expansion has
now been replaced by an ε′-expansion where ε′ = 1− δ. This δ-expansion was
interpreted as a scheme in which a large amount of energy is injected into the
system (Carati, 1990b).

Although Carati viewed this colored forcing correlation as a good way to
sidestep the problems with the ε-expansion, he did not consider that the in-
troduction of this colored noise would violate the Galilean invariance. This
important issue was pointed out by Yuan and Ronis (1992) in their analysis
(see subsection 4.3).

9.6 Kraichnan’s Interpretation of YO using the Distant Interaction Algo-
rithm (DSTA)

Kraichnan (1987a,b) found that the principal physical content of YO can be
more directly expressed by an approximation, the Distant Interaction Algo-
rithm (DSTA), that involves neither the RG procedure of the elimination of
successive infinitesimal shells in wave vector space nor the ε expansion.

From the closure theories, Kraichnan noted that the eddy viscosity at wavenum-
ber k is influenced by all triad interactions involving a mode of wavenumber
q ≥ p > k, and has the asymptotic form

ν(k|p, t) =
1

15

∞∫

p

dqθ(q)(5E(q, t) + q
∂E(q, t)

∂q
), (107)

where the characteristic time for build up of triple correlations is

θ(q, t) = [2q2ν(q) + 2q2ν]−1. (108)

The next assumption of Kraichnan is that the total viscosity ν(k|p, t) satisfies

ν(k, t) = ν(k|ξk, t). (109)
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Here ξ ≥ 1 is a cutoff ratio and ν(k|p, t) is defined as the contribution to ν(k, t)
arising from all triad interactions (k,q,q′) such that either q, q′, or both are
> p. Thus, above equation implies that the dynamical damping arises solely
from interactions of k with sufficiently higher wavenumbers.

The additional assumption is that

ν(k|p, t) = ν(0|p, t), (p ≥ ξk). (110)

This equation states that the total dynamical viscosity experienced at k from
interactions with modes of wavenumber > ξk, with ξ ≥ 1, may be approxi-
mated by the asymptotic dynamical viscosity exerted at very low wavenumbers
by the same modes. Using this model, one obtains a ξ-dependent Kolmogorov
constant CK(ξ) for a steady state inertial range spectrum,

E(k) = C(ξ)E2/3k−5/3. (111)

With this form of the energy spectrum, beta-dependent eddy viscosity scaling
can deduced from that obtained from the closure theories

ν(k) ≡ ν(0|k, t) = A(ξ)E1/3k−4/3. (112)

The coefficient of the eddy viscosity is given

A(ξ) = [7C(ξ)/60]1/2ξ2/3. (113)

Kraichnan (1987) inspected the logical distinction between two procedures,
RG and Distant Interaction Algorithm (DSTA): First of all, he inspected the
multiple scale elimination. The evaluation of eddy viscosity by perturbative
elimination of successive small spherical shells of high-wavenumber modes can
be carried out by specifying an actual energy spectrum (Rose, 1977, Zhou et
al., 1988, 1989) rather than introducing a forcing spectrum. Next, Kraichnan
discussed the method of “ε-expansion”. In this procedure, the properties of a
E(k) ∼ k1−2ε/3 spectrum range are examined through an expansion, in powers
of ε, about the properties of a spectrum E(k) ∼ k.

Kraichnan’s analysis is based on an estimation of the qualitative nature of
eddy damping in an energy spectrum of the form

E(k) ∝ ks (kc < k < kd). with s = 1− ε (0 < ε < 4), (114)

The corresponding eddy damping is given by RG as

ν(k|p) ∝ (p/k)−ε/3 (115)
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For the Kolmogorov inertial range spectrum, ε = 4, the eddy damping is local
for any positive ε since ν(k|p)→ 0 as p→∞.

In YO, the explicit calculation of the eddy damping is first made in the near
neighborhood of this reference spectrum. Now distant interactions are actually
weakly dominant for E(k) ∼ k. At s = 1 or ε = 0, Eq. (115) is replaced by

ν(k|p) ∝ ln(kc/p). (116)

The results are then mapped to the Kolmogorov spectrum by extrapolating
to the limit ε→ 4, although such a numerical value of 4 is not small and the
validity of the extrapolation is by no means clear.

10 Eulerian vs. Lagrangian theory in ε-RG: Sweeping vs Straining

As noted earlier, a central discovery of Kraichnan was that both ‘sweeping’
(random advection of small scales by large scales) and ‘straining’ (local distor-
tion of small scales by scales of comparable size) exist in turbulence and have
different roles in turbulence dynamics. We saw that analytically, sweeping in-
teractions occur when either ‘leg’ p or q of the triad (k,p,q), with k = p + q,
approaches zero. In this arrangement, it is possible for the rms excitation at
large scales to become dynamically significant. We recall that the dependence
of the Eulerian two-time correlations on sweeping leads to the DIA prediction
of a k−3/2 energy spectrum (see Sections 3); the dynamic processes leading to
the Ironshikov-Kraichnan spectrum turbulence and the Kolmogorov spectrum
for MHD turbulence rests on the analogous possibility of dependence on the
rms magnetic field.

The issue of sweeping was also studied by YOS (Yakhot, Orszag, and She
(1989)) in the context of the scaling of the kinetic energy fluctuations and
Kraichnan’s principle (Kraichnan, 1964) of ‘random Galilean invariance.’ They
made the observation that ‘sweeping’ interactions are negligible when ε = 0,
because the corresponding energy spectrum E(q) ∼ q vanishes at q = 0.

Within the ε-RG framework, YOS concluded that the kinetic energy fluctu-
ations scales as −7/3, after extrapolating ε = 0 to arbitrary ε. It should be
noted that this −7/3 scaling was found previously when the Kolmogorov di-
mensional analyis is applied to higher order powers of velocity fluctions. In
fact, Dutton & Deaven (1972) obtained the spectra of all even powers of the
velocity scale according to their dimensional analysis based on an extended
Kolmogorov scaling.

Yet, both Chen & Kraichnan (1989) and Nelkin & Tabor (1990) have argued
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that the YOS attempt to extrapolate to arbitrary ε proves to lead to an incor-
rect scaling of kinetic energy fluctuations. In particular, Nelkin & Tabor (1990)
carefully inspected the spectra of kinetic energy fluctuations and found them
scale as k−5/3. These authors pointed out that the controversy on whether
the kinetic energy fluctuations should scale as −5/3 or −7/3 can be conclu-
sively resolved. Van Atta and Wyngaard (1975) documented strong evidence
in support of the −5/3 scaling from their geophysical turbulence experimental
data 31 . Zhou et al., 1993 also offered clear evidence based on high Reynolds
number laboratory experimental data obtained from both the return channal
and mixing layer (Praskovsky et al., 1993)

A useful comparison can be made with the dimensionally equivalent pressure
fluctuation spectrum (for a classical analysis, see Batchelor (1951). for a anal-
ysis without the joint Gaussian assumption, see Hill and Wilczak (1995)).
Analytically, it is found that substitution of a Kolmogorov spectrum extend-
ing over all scales into the expression for the pressure spectrum yields a finite
result, for which dimensional analysis correctly predicts the scaling exponent,
−7/3 (for DNS result, see Gotoh and Fukayama, 2001). However, the same cal-
culation for the kinetic energy fluctuation spectrum yields a divergent result.
However if one replaces the infinite Kolmogorov spectrum by a Kolmogorov
spectrum cut off at some scale k0, the pressure spectrum gives a result propor-
tional to k

−2/3
0 k−5/3. This dependence on k0 reflects the dependence on the rms

velocity, which also diverges as k
−2/3
0 for a Kolmogorov energy spectrum. Intu-

itively, the difference comes about because the pressure spectrum depends on
velocity gradients, which are insensitive to sweeping by large scales. This is the
same mechanism responsible for the successful prediction of the Kolmogorov
spectrum by Lagrangian versions of DIA.

Chen & Kraichnan (1989) argued that in the YO and YOS theory, the mode
elimination preferentially focuses on triads k,p,q for which p� k and q � k.
The sweeping interactions with q ≈ 0 do not appear in the mode elimination
procedure. In this sense, Chen & Kraichnan remarked that the sweeping is
‘excluded at the outset’ in ε-RG analysis.

It is perhaps more precise to say that in YO’s formalism, local interactions
are represented by the random force (Smith and Woodruff, 1990). But here
too, the random force is defined to be local, that is, independent of the rms
excitation. If local interactions are modeled this way, then it is again correct
to say that sweeping is excluded from the outset.

These arguments make the actual suppression of sweeping when ε = 0 dy-
namically irrelevant. This issue can be inspected in the context of Woodruff’s

31 see also, Van Atta and Chen (1970), Van Atta and Park (1972) and Van Atta
(1996)
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(1994) application of the ε-expansion to DIA. Woodruff found that sweeping
is suppressed when ε < 3, but becomes dominant when ε > 3. While one can
argue that this is a property of DIA, not necessarily of turbulence itself, it
nevertheless suggests that extrapolation from ε = 0 is by no means straight-
forward and not necessarily valid. This observation has also been made by
Sukoriansky et al. (2003).

11 Iterative conditional averaging RG approach

11.1 i-RG procedure

We now summarize a method of eliminating turbulent modes which is based
on the use of a conditional average to distinguish between amplitude and phase
correlation effects (i-RG hereafter). 32 It has its roots in the method of itera-
tive averaging of McComb (1982) and McComb & Shanmugasundaram, (1993,
1994) 33 , which was developed over a number of years as a possible method
of applying the renormalization group approach to real fluid turbulence (Mc-
Comb 1982, 1986, 1990). However, an essential feature of the more recent work
in this area is the formal treatment of the conditional average and the devel-
opment of methods of approximating its relationship to the usual ensemble
average (McComb & Watt 1990, 1992; McComb et al., 1992, 1993).

The basic idea is that the turbulent velocity field in wavenumber space may
be decomposed into two distinct fields. One is a purely chaotic field; while the
other is a correction field, and carries all the phase information. Application
of this decomposition to a thin shell of wavenumbers in the dissipation range
allows the elimination of modes in that shell; with the usual mode-coupling
problems being circumvented by the use of a conditional average. The (con-
ditional) mean effect of the eliminated modes appears as an increment to the
viscosity. An iteration (with appropriate rescaling) to successively lower shells,
reaches a fixed point, corresponding to a renormalized turbulent viscosity.

While several interpretations have been presented, in the final analysis, the
net effect of the iteractive averaging method is to neglect both the term (A)
in Eq. (60) and the term (I) in Eq. (61). We now illustrate the i-RG procedure
in some detail.

32 The iterative condtional averaging method, also called a Two-Fields method, is
discussed in McComb, 1990, 1995. see also, Zhou, McComb, and Vahala, 1997
33 Zhou & Hossain (1990) offered a perspective on the iterative RG
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The resolvable scale Navier-Stokes equation (k < k1) is

[ ∂

∂t
+ ν0k

2
]
u<

i (k, t) = λ0Mimn(k)
∫

d3p[u<
m(p, t)u<

n (k− p, t)

+u>
m(p, t)u>

n (k− p, t)︸ ︷︷ ︸
B

], (117)

Again, the strength of the nonlinear interaction is denoted by λ0, a formal
ordering parameter for perturbation theory, which is eventually set to unity.

The subgrid scales Navier=Stokes equation (k1 < k < k0) is

[ ∂

∂t
+ ν0k

2
]
u>

i (k, t) = λ0Mimn(k)
∫

d3p[2u>
m(p, t)u<

n (k− p, t)︸ ︷︷ ︸
II

]. (118)

We now provide some detail on the i-RG procedure for removing the first sub-
grid shell k1 < k ≤ k0. The subgrid equation is substituted into the resolvable
Navier-Stokes equation and then an average is performed over the subgrid
scales, keeping terms only to O(λ2

0).

On substituting term (II) of Eq. (118), we obtain a term which on subgrid
scale averaging yields a renormalized eddy viscosity, δν>>

0 (k) which consists
only contributions from subgrid-subgrid interactions.

After removing the first subgrid shell, the renormalized Navier-Stokes equation
(replacing u< by u) reads

[ ∂

∂t
+ ν1(k)k2

]
ui(k, t) = λ0Mimn(k)

∫
d3p[um(p, t)un(k− p, t), (119)

where k < k1. The renormalized eddy viscosity is given by

ν1(k) = ν0 + δν>>
0 (k). (120)

As a result, i-RG procedure does not introduce new triple velocity product
in the resulting renormalized Navier-Stokes equation. This is especially sig-
nificant when the remaining subgrid shells are removed, since the enhanced
eddy viscosity will only be contributed from the usual Navier-Stokes quadratic
interactions.

The renormalized eddy viscosity, ν>>
∗ (k) is the fixed point of the recursion

relation

νn+1(k) = νn(k) + δν>>
n (k). (121)
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As shown in Fig. 4, the i-RG spectral eddy viscosity does not show a cusp-like
behaviour as k → kc. This is in disagreement with that from closure theory
(Kraichnan, 1976; Leslie & Quarini, 1979; Chollet & Lesieur, 1981)

The renormalized Navier-Stokes equation is given by

[ ∂

∂t
+ ν>>

∗ (k)k2
]
ui(k, t) = λ0Mimn(k)

∫
d3p[um(p, t)un(k− p, t), (122)

where k < kc.

This is a good time to summarize the key findings of i-RG:

(1) Unlike YO, the renormalized eddy viscosity obtained from i-RG has k ⊂
[0, kc]

(2) At k → 0, the renormalized eddy viscosity approached a constant and this
asymptotic result should be compared with that of YO.

(2) The renormalized eddy viscosity, ν∗(k), decreases as k → kc. Here, ν∗(k)
represents only these contributions from subgrid-subgrid interactions. The
resolvable-subgrid scales interactions are neglected in i-RG.

(4) The renormalized Navier-Stokes equation has the same structure with only
quadratic nonlinear interactions, but with (i) k ⊂ [0, kc] instead of k ⊂ [0, k0)
and (ii) ν∗(k) instead of ν0.

11.2 Some work using the iterative averaging RG procedure

Nagano & Itazu (1997b) have applied the iterative averaging RG method to
derive an eddy viscosity. Since the subgrid-resolvable scale interactions are
not considered in this method, it not surprising the resulting eddy visosity
is essentially that obtained from the Boussinesq approximation. Nagano &
Itazu found that the proportionality constant takes a suitable value when the
Kolmogorov constant is chosen near its accepted value.

Lin et al. (2001) applied iterative averaging RG to turbulent thermal transport
and Chang & Lin (2002) implemented the same scheme to MHD. Cao & Chow
(2004) also followed the procedure of McComb et al. and carried out their
calculations for eddy viscosity and thermal eddy diffusivity 34 .

34 For reasons not properly understood by this author, Cao & Chow (2004) were
able to obtain an eddy viscosity with a strong cusp when k → kc.
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While their RG procedure is essentially that of McComb’s i-RG, Chang et al.
(2003) did make two changes from McComb’s i-RG. First, the assumed energy
spectrum is given in the form of Pao (1965) and Leslie & Quarini (1979) spec-
trum instead of the Kolmogorov spectrum. Second, the recursive relation for
the eddy viscosity is computed 35 by an ordinary differential equation (o.d.e.)
which is a function of resolvable scale wavenumber dependence k.

12 Recursive RG

Recursive renormalization group (r-RG) procedures were introduced because
of problems encountered in the development of ε-RG. In particular, one of the
problem faced by YO was a small ε expansion followed by an extrapolation
from ε � 1 to ε → 4, yet passing through a divergence at ε = 3. The ε → 4
limit is crucial in order to recover the Kolmogorov energy spectrum. Also,
in ε-RG one must invoke the distant interaction limit k → 0. This makes it
nearly impossible to make any comparison between the transport coefficients
of ε-RG and the the wave-number dependent transport coefficients of closure
theories (Kraichnan, 1976; Leslie & Quarini, 1979; Chollet & Lesieur, 1981)

12.1 r-RG procedure

For k < k1, the resolvable scale Navier-Stokes equation is

[ ∂

∂t
+ ν0k

2
]
u<

i (k, t) = λ0Mimn(k)
∫

d3p[u<
m(p, t)u<

n (k− p, t)

+ 2u>
m(p, t)u<

n (k− p, t)︸ ︷︷ ︸
A

+u>
m(p, t)u>

n (k− p, t)︸ ︷︷ ︸
B

], (123)

The strength of the nonlinear interaction is denoted by λ0, a formal order-
ing parameter for perturbation theory, which is eventually set to unity. It is
convenient to label the kinematic viscosity ν ≡ ν0.

For the subgrid scales, k1 < k < k0, we have

[ ∂

∂t
+ ν0k

2
]
u>

i (k, t) = λ0Mimn(k)
∫

d3p[u<
m(p, t)u<

n (k− p, t)︸ ︷︷ ︸
I

35 Note that the structure of the o.d.e. is similar to that of Rose (1977) and Zhou
& Vahala (1993a).

60



+2u>
m(p, t)u<

n (k− p, t)︸ ︷︷ ︸
II

+u>
m(p, t)u>

n (k− p, t)︸ ︷︷ ︸
III

]. (124)

We now provide some detail on the RG procedure for removing the first subgrid
shell k1 < k ≤ k0. The subgrid equation is substituted into the resolvable
Navier-Stokes equation and then an average is performed over the subgrid
scales, keeping terms only to O(λ2

0).

Now we consider term by term the effect of this substitution

(a) Term (A) Eq. (60):

The effect of term (I) is to introduce a new triple nonlinearity.

In his application of RG procedure to a passive scalar equation, Rose (1977)
discussed the role of the triple nonlinear terms in physical space. He pointed
out that it represents the possibility of an exchange of scalar eddies between
the resolvable and subgrid scales. This effect is an inherent property of mea-
surements made on the passive scalar system with instruments which have a
spatial resolution limited to an eddy size greater than 1/kc.

The effect of term (II) in Eq. (60) is zero after performing the subgrid scale
averaging [under subgrid scale averaging < u> >= 0].

Term (III) in Eq. (60) is also zero on averaging over the homogeneous subgrid
scales since u> and u< are connected by the same vertex. This can be readily
seen algebraically: for p in the subgrid shell, term (III) becomes, on subgrid
averaging

∫
dpdp′ < u>(p− p′)u>(p′)u<(k− p) > =

∫
dpdp′Q(p− p′)δ(p)u<(k− p) = 0

(125)

since p is in the subgrid k0 < p < k1, and so cannot satisfy |p| = 0.

(b) Term (B) Eq. (60):

Working only to O(λ0), the substitution of term (I) in Eq. (61) into term
(B) of Eq. (60) yields a term of the form < u<u<u> >. Under subgrid scale
averaging this term vanishes, since < u> >= 0

On substituting term (II) of Eq. (61), we obtain a term which on subgrid scale
averaging yields a renormalized eddy viscosity.
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Again, as is invariably done in RG theories, one neglects the effect of sub-
stituting term (III) in Eq. (61) by arguing that it is a higher order effect.
Neglecting this term is, of course, a closure approximation. +

12.2 Renormalized momentum equation

After the first subgrid shell is removed, the renormalized Navier-Stokes equa-
tion reads

[∂/∂t + ν1(k)k2]ui(k, t) = Mimn(k)
∫

d3pum(p, t)un(k− p, t)

+Mimn(k)
∫

d3pd3p′Mmm′n′(p)Γ1um′(p′, t)un′(p− p′, t)un(k− p, t),(126)

where ν1(k) is the enhanced eddy viscosity (see next subsection) and Γ1 as a
wavenumber dependent factor.

After the second subgrid shell is removed, the renormalized Navier-Stokes
equation reads

[∂/∂t + ν2(k)k2]ui(k, t) = Mimn(k)
∫

d3pum(p, t)un(k− p, t)

+Mimn(k)Σ2
1

∫
d3pd3p′Mmm′n′(p)Γ1um′(p′, t)un′(p− p′, t)un(k− p, t),

(127)

where ν1(k) is the enhanced eddy viscosity (see next subsection) and Γ1 as a
wavenumber dependent factor.

We obtain the final renormalized Navier-Stokes equation

[∂/∂t + ν∗(k)k2]ui(k, t) = Mimn(k)
∫

d3pum(p, t)un(k− p, t)

+Mimn(k)ΣN
1

∫
d3pd3p′Mmm′n′(p)Γum′(p′, t)un′(p − p′, t)un(k− p, t)

(128)

by removing all the subgrid shells iteratively. For simplicity, we denoted Γ as
a wavenumber dependent factor 36 .

We now turn our attention to the question of the Galilean invariance of the
renormalized Navier-Stokes equations of r-RG. The importance of Galilean

36 Interesting readers are referred to Zhou et al. (1988, 1989) and Zhou & Vahala
(1993a,b) for detail
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invariance in turbulence modelling has been emphasized by Speziale (1985).
To be consistent with the basic physics, it is required that the description of
the turbulence be the same in all inertial frames of reference. The appearance
of the triple nonlinear term, which is a function of the resolvable scales velocity
fields, makes the property of the Galilean invariance of r-RG not transparent.
However, Zhou & Vahala (1993b) have demonstrated that the renormalized
Navier -Stokes equation of r-RG is Galilean invariant.

12.3 Difference equation for the renormalized eddy viscosity

After the removal of the first subgrid shell, the spectral eddy viscosity becomes

ν1(k) = ν0(k) + δν>>
0 (k), (129)

where ν>>
0 (k) is the contribution from the quadratic term of Navier-Stokes

equation. Note that the triple velocity product term in the renormalized
Navier-Stokes equation was just generated in this step.

After the removal of the second subgrid shell, the spectral eddy viscosity in
the renormalized momentum equation is

ν2(k) = ν1(k) + δν>>
1 (k) + δν><

1 (k), (130)

here the δν>>
1 (k) term is due to the quadratic nonlinearity and the δν><

1 (k)
is due to the triple nonlinearity.

After the removal of the (n + 1)th subgrid shell, the spectral eddy viscosity in
the renormalized momentum equation is determined by the recursion relation

νn+1(k) = νn(k) + δν>>
n (k) + Σδν><

n (k). (131)

This recursion relation has contributions from both the quadratic and the
triple nonlinear terms in the renormalized Navier-Stokes equation. This dif-
ference equation, after rescaling, has been solved by Zhou et al. (1988, 1989)
and fixed points were readily determined for finite f ≤ 0.7, where f measures
the width of the range of modes being eliminated (sec. 6).

As shown in Fig. 4 (Zhou et al., 1988), the r-RG spectral eddy viscosity ex-
hibits a mild cusp as k → kc, in qualitative agreement with that from closure
theory (Kraichnan, 1976; Leslie & Quarini, 1979; Chollet & Lesieur, 1981).
The test-field model result of Kraichnan (1976), exhibiting the cusp behavior
near the cutoff wavenumber, kc, is reproduced in the unmarked curve. The
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curve marked by triangle is the r-RG model without triple nonlinearity. Mc-
Comb’s i-RG result(which is claimed to be able to somewhat avoid the triple
nonlinearity) is shown by the dash-dot curve.

12.4 Total r-RG spectral eddy viscosity based on the energy transport

At a glance, the strength of the eddy viscosity cusp as k → kc is a major dis-
crepancy between r-RG and the closure theories. This discrepancy is resolved
by examining the r-RG energy transfer equation (Zhou and Vahala, 1993a).

In fact, there is no reason the eddy viscosity obtained from r-RG and closure
theories should agree at the first place. Indeed, Leslie & Quarini (1979) ele-
gantly illustrated how the spectral eddy viscosity can be evaluated from the
energy transfer equation. Since the renormalized Navier-Stokes equation now
contains the triple velocity products, one should expect that these cubic non-
linearities will contribute to the energy transfer process and enhanced eddy
viscosity.

The time evolution of the energy spectrum, E(k, t), was constructed from the
renormalized Navier-Stokes equation and reads

∂E(k, t)

∂t
= −2ν∗(k)k2E(k)(k, t) + T D(k, t) + T T (k, t). (132)

In this equation, T D(k, t) is the standard energy transfer from the quadratic
nonlinearity. In contrast, T T

ii (k, t) = −2νT (k)k2E(k) is the energy transfer
arising from the RG induced triple nonlinearity.

In Fig. 5, we comparie the net r-RG eddy viscosity (νnet(k) = ν∗(k) + νT (k)
arising in the r-RG energy transport equation (Zhou and Vahala, 1993a) with
that arising from closure theories (Kraichnan, 1976; Leslie & Quarini, 1979;
Chollet & Lesieur, 1981). Here ν∗(k) is the r-RG eddy viscosity and νT (k) is the
drain eddy viscosity in the energy transport equation arising from the triple
nonlinearities of the renormalized r-RG Navier-Stockes equation. The net r-
RG eddy viscosity nnet(k) is plotted from various vaules for r = kc/Kp, where
Kp is a constant which is directly correlated to the location of the maximum
in a production-type energy spectrum (Leslie & Quarini, 1979, for a plot of
such production energy spectrum, see Fig. 1 of Zhou and Vahala, 1993a). It
is clear that νT (k) is the major contributor to the cusp-like behavior of the
spectral eddy viscosity as k → kc.

The closure theories (Kraichnan, 1976; Leslie & Quarini, 1979; Chollet &
Lesieur, 1981) have shown that the major contribution to the strong cusp
behavior in the spectral eddy viscosity was the local interactions (namely, the
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resolvable-subgrid scales interactions. Now returning to the r-RG framework,
these triple velocity products in the renormalized Navier-Stokes equation were
also resulted from the resolvable-subgrid scale interactions. When the energy
transfer equation is formed, these cubic nonlinearities should and have shown
to exhibit the cusp-like behaviour as k→ kc.

In summry, in recursive RG, no attempt is made to introduce a special form
of overlapping as in conditional averaging, and one proceeds directly with
standard averaging and handles the triple nonlinearity directly. The basic
differences between the r-RG and ε−-RG as well as i-RG procedures are that
in r-RG:

(1) In contrast with ε−-RG but in agreement with i-RG, ε-expansion is not
performed.

(2) The turbulent transport coefficients are determined for the whole resolv-
able wavenumber scales (both local and nonlocal interactions are taken into
account), but

(i) In ε−-RG, only k → 0 limit is considered

(ii) In i-RG, only subgrid-subgrid interactions are kept when k→ kc

(3) Triple nonlinearities are generated in the renormalized momentum equa-
tion and play a critical role in determining the transport coefficients. This is
a major departure point when compared with both ε−-RG and i-RG.

13 Measurements of the locality of interactions and subgrid/resolvable
interactions using numerical simulation databases

13.1 Disparity parameter

The essential aspects of these two fundamental assumptions of Kolmogorov
(1941) – the local energy transfer and local interactions – have received support
from studies that use both direct numerical simulations and Eddy-damped
Quasi-Normal (EDQNM) closures. The local energy transfer was confirmed
by Domaradzki & Rogallo (1990), Yeung & Brasseur (1991), Ohkitani & Kida
(1992) and Zhou (1993a,b). While there were some suggestions that the Kol-
mogorov’s local intereaction assumption may not correct (Domaradzki & Ro-
gallo, 1990; Yeung & Brasseur 1991), it has been shown that the local interac-
tion are in fact dominant by the introduction of the scale disparity parameter
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(Zhou, 1993a,b; Zhou et al., 1996)

s =
max(k, p, q)

min(k, p, q)
(133)

where k = p + q forms the standard triads. The introduction of this disparity
parameter permits a separation of the local from the nonlocal interactions.
Noting that the flux rate of energy, Π(k), across a spectral scale k is the
most basic measure of the energy transfer process and within the framework
of Kolmogorov universal equilibrum range, it is the only link between the
enegetic and dissipative scales of motion. It was found that the dependence
upon the scale disparity parameter is the same for all inertial ranges scales.
The measured fraction energy flux Π(k, s)/Π(k) is essentially independent of k
(Fig. 4) as would be expected in a scale-similar inertial range (Zhou, 1993a,b).

13.2 Numerically evaluated subgrid-resolvable and subgrid-subgrid eddy vis-
cosities

We consider directly the contributions of subgrid-resolvable and subgrid-subgrid
terms in Eq. (60) to the eddy viscosity.

The time evolution of E<<(k, t) for k < kc is

∂E<<(k, t)

∂t
= −2νk2E<<(k, t) + T <<(k, t) + T ><(k, t) + T >>(k, t).(134)

In this equation, T <<
ij (k, t) is the standard resolvable scale energy transfer

from the quadratic nonlinearity. In contrast, T >< and T >>(k, t) are the en-
ergy transfer arising from the subgrid-resolvable scales (the RG induced triple
nonlinearity) and the subgrid-subgrid scale (the RG quadratic nonlinearity)
interactions.

Energy transfer (between resolvable and subgrid scales) and spectral eddy
viscosity can be analyzed using results from direct numerical simulations by
introducing an artificial cut at a wavenumber kc that is smaller than the
maximum resolved wavenumber km of the simulation. With this fictitious sep-
aration between the subgrid and resolvable scales, it is possible to evaluate
the effect of the subgrid kc < k < km on the resolved scales k < kc (Do-
maradzki et al., 1987, Lesieur &ogallo, 1989, Zhou & Vahala, 1993a). We form
an energy equation from the momentum equation and introduce the following
notation: T ><(k) and T >>(k) represent the spectrum of energy transfer to
mode k resulting from interactions with one and both modes above the cutoff
kc respectively.
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Measurements of numerical simulation databases indicate the following (Zhou
& Vahala, 1993a) (see Fig. 5):

• T >>(k) removes energy throughout the resolvable scales in a manner con-
sistent with the notion of eddy viscosity.

• T ><(k) removes energy from the last resolved octave that was transferred
there by the resolved scale transfer; that is, it allows the local flow of energy
through kc. It is the most important subgrid effect near kc and accounts for
most of the energy flow from the resolved scales.

The subgrid spectral eddy viscosity ν>>(k) and ν><(k) can be determined
from T >>(k) and T ><(k) for a given energy spectrum, E(k). Specifically,
ν>>(k) = −T >>(k)/2k2E(k) and ν><(k) = −T ><(k)/2k2E(k)(seeF ig.6).

Two important features of the quadratic contribution ν>>(k) should be stressed.
First, its positive constant asymptote at small k indicates that the concept of
modeling this contribution as an eddy viscosity in analogy to the molecular
viscosity is plausible, and second, its value decreases monotonically as k in-
creases toward kc. This indicates that if we include only the contribution of
quadratic velocity products, there is no eddy viscosity cusp at the cutoff kc.
The most important feature of ν><(k) is the sharp increase at k → kc.

13.3 Dynamical measurements of the locality of interactions and subgrid/resolvable
interactions

13.3.1 Description of the simulation models

To investigate the influence of the nonlinear interaction terms (A) and (B)
in Eq. (60) on the time evolution of the resolvable scales u<

α (k), Dubois,
Jauberteau, and Zhou (1997, hereafter DJZ) have implemented two models.

The first model, modelA, computes u<,A
i (k, t) ignoring term (B) in Eq. (60):

[ ∂

∂t
+ ν0k

2
]
u<,A

i (k, t) = Mimn(k)
∫

d3p[u<,A
m (p, t)u<,A

n (k− p, t)

+2u>,DNS
m (p, t)u<,A

n (k− p, t)]. (135)

Here, u>,DNS corresponds to the small scales of the DNS velocity field uDNS

that is obtained by solving the full system, Eqs. (60) and (61), without making
any approximation regarding the nonlinear terms.

The second method, modelB, evaluates u<,B
α (k, t) with the equation (1) in
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which the term (A) is neglected in Eq. (60):

[ ∂

∂t
+ ν0k

2
]
u<,B

i (k, t) = Mimn(k)
∫

d3p[u<,B
m (p, t)u<,B

n (k− p, t)

+u>,DNS
m (p, t)u>,DNS

n (k− p, t)]. (136)

These two models can be summarized as following. ModelA keeps only the
cross interactions between the resolvable and subgrid scales while neglecting
the influence of the interactions among small scales on the evolution of the
large ones. ModelB, on the other hand, keeps the subgrid interaction term,
while neglecting the interactions between the subgrid-resolvable scales.

As mentioned before, the “modeled LES” fields should be statistically the
same as the large scales of the DNS field. Hence, in order to check the valid-
ity of ModelA and ModelB, the solutions u<,A

α and u<,B
α are compared with

u<,DNS
α , the filtered DNS solution (fDNS).

13.3.2 Comparison of velocity spectra

We first consider the results of the so-called simulation S1. Figure 7 shows
the energy and enstrophy spectra corresponding to DNS, ModelA and ModelB

at the intermediate time t = 13.5τ. It is clear that ModelA provides a better
resolution of the resolvable scale energy spectrum. We note that an energy
pile-up appears near the cut-off wavenumber k1 on the ModelB spectrum.
This energy pile-up is not dissipated but tends to accumulate and to modify
the slope of the spectrum for k < k1, even at short times. This energy pile-
up is not seen in the ModelA spectrum. Thus, by taking into account the
cross interaction term (A) in Eq. (60), one achieves a better description of the
energy transfers.

13.3.3 Examination of a correlation coefficient

Figure 8 shows the time evolution of the correlation coefficient, defined in (12),
for the simulation S1. As time increases, the correlation coefficient between
the fDNS and ModelB decreases more rapidly than that between the fDNS
and ModelA. After 10 eddy turnover times, the ModelA correlation coefficient
remains on the order of 1, while the ModelB coefficient is close to 0.75. After
this period (i.e. for t > 10τ ), both coefficients then have a similar behavior and
decay as t/3, before reaching a short plateau. This result shows the importance
of the cross-interaction term (A) in subgrid modeling: the cross interaction
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term provides not only the correct magnitude for the energy, but also the
needed phase information from the subgrid scale.

In both ModelA and ModelB, a part of the interaction terms is kept and com-
puted directly with the small scales u>,DNS of the full DNS. As a result, the
velocity fields u<,A and u<,B remain correlated with u<,DNS over a longer
period of time.

13.4 Additional Evidence for the Importance of Subgrid-Resolvable Scale In-
teraction: The work by Laval et al.

In an interesting paper, Laval, Dubrulle & McWilliam (2003) studied several
approximations to the Navier-Stokes equations, in the spirit of rapid distortion
theory. The empirical eddy viscosities obtained from the Langevin model are in
good agreement with that obtained from the DIA of Kraichnan. Furthermore,
the so-called Langevin Rapid Distortion Theory (RDR) model, which keep the
interactions between local and nonlocal scales, is able to reproduce the correct
spectrum shape, intermittecy statistics, and coherent flow structures for both
the resolved and the largest sub-grid scales. These results are consistent with
those found in Dubois, Jauberteau & Zhou (1997). Finally, Laval et al. plotted
the correlation coefficient between their model and DNS. Again, as in Dubois
et. al., it seems (see their Fig. 22) that the model incorporates the effects of
the interaction between local and nonlocal scales with filtered DNS for much
longer times than that arising from simulations with only a spectral eddy
viscosity in the form of Chollet & Lesieur (1981).

13.5 Additional Evidence for the Importance of Subgrid-Resolvable Scale Int-
geraction: The work by McComb et al.

We recall that in all of the iterative RG procedure by McComb and co-workers,
the single focus was to eliminate the interaction between the subgrid and re-
solvable scales (as well as the triple nonlinear terms that are resulted form
such interactions). However, McComb, Hunter & Johnson (2001) now state
that the large-eddy simulations based on iterative averaging RG (now refered
by them as a two-field theory), and which now only contains the effects of
subgrid-subgrid stress, perform reasonably well when compared to other ap-
proaches, presumably those of Smagorinsky type. This fact was previously
demonstrated in Dubois et. al.. Based on their numerical experiments, again
similar to those of Dubois et. al., and Laval et al., the spectral correlations of
subgrid and resolved scales dominate the momentum transfers in the equation
of motion. Numerical simulations of McComb et al. (2001) also show that the
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subgrid-subgrid interaction only plays a significant role for very large scale
separation. This result was reported previously in Zhou & Vahala (1993a).

So what one can say about the iterative RG (or ”two-field theory”)? McComb
et al., themselves offered a candid assesement: i-RG can provide a partial
model to represent the dissipation rate and that a promising way forward
would be to adopt a hybrid approach. This is clearly true, since it is the
subgrid-subgrid interactions that are responsible for the dissipative effects (
see comments on this issue in Zhou & Vahala, 1993a, Zhou, 1991).

14 Selected work on plasma turbulence

14.1 Hasegawa-Mima Equation

Large-scale flows, such as zonal flows, play an important role in steady state
turbulence. On many occasions, such flows are believed to develop out of
the turbulence through the nonlinear interactions between the fluctuations
themselves (Kim, 2004). The Hasegawa-Mima (1978) equation is a widely
used model for electrostatic fluctuations, and has a close resemblance to the
two-dimensional Navier-Stokes equation for an incompressible fluid.

The Hasegawa-Mima equation has only one nonlinear term which originates
from the nonlinear polarization drift (Hasegawa & Mima, 1978), but has
demonstrated over the years its capacity of yielding useful information with
reasonable cost. The distribution of the energy anisotropically in two direc-
tions has been revealed in computer simulatioins (Horton, 1999). Using this
equation, Hasegawa & Mima obtained the frequency integrated k spectral
density as well as the width of the ω spectrum, assuming the coexisting of a
large amplitude long wavelength potential fluctuation. Since the result does
not depend on any particular mode of the system, the spectral density ob-
tained is considered to be universal for a magnetized nonuniform collisionless
plasma (Hasegawa & Mima, 1978). Krommes & Kim (2000) also calculated
the growth rate of the large-scale fluctuation due to the interactions between
the short-scale fluctuations.

Kim (2004) applied the field-theoretical RG method to the Hasegawa-Mima
equation. Since small-scale drift-wave turbulence may drive the large scale
fluctuations anisotropically, it is modeled as a random anisotropic external
forcing peaked at high k.

Two dimensional turbulence, as will be shown in the next subsection, intro-
duced higher level of complexity than the three-dimensional problem. Follow-
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ing Honkonen & Nalimov (1996), a new small parameter was introduced by
Kim (2004) to avoid a divergent diagram by noise renormalization.

As usual, the RG procedure attempts to find a stable fixed point of the RG
flows in the limit of long-time and large-scale limit. Of course, one assumes
that the scaling behavior is well established up to this limit (Kim, 2004).
Local noise is added so that the divergence can be regulated. The drift-wave
frequency and the gyroradius were found to be irrelevant parameters and
the corrections to their values were of higher order. In the limit of k → 0
and ω → 0, a stable fixed point was found as a function of forcing. The
renormalized coupling constants for the nonlocal and local noise as well as
the renormalized anisotropy as a function of the external forcing. Up to one
loop order, large-scale fluctuations were found to grow under the anisotropic
forcing drive, in agreement with the results from numerical simulations.

14.2 Alfvén turbulence

The theory of compressible magnetohydrodynamic MHD, e.g., Alfvénic! turbu-
lence has been a topic of interest. As summarized by Medvedev and Diamond
(1997), Alfvén wave turbulence presents several novel challenges, due to the
fact that the kω selection rules preclude three Alfvén-wave resonance. Thus,
in incompressible MHD, two Alfven waves can interact only with the vortex
(i.e., eddy) mode. Compressibility relaxes this constraint by allowing interac-
tion with accoustic and ionballistic modes (i.e., Landau damping), along with
waveform steepening.

Chen & Mahajan (1985) have considered a model Alfvén wave turbulence
problem and under certain assumptions showed that the Alfvén wave spectrum
developed a power law inertial range. The model shear Alfvén wave equation
was derived from ideal magnetohydronamics for equilibria with no fluid flow,
uniform density and constant toroidal magnetic field.

Now in working with such a nonlinear equation, one may ask: in shear Alfven
wave turbulence, how important can the small scale structures be if an inverse
cascade exists as it does in two-dimensional Navier-Stokes turbulence (Kraich-
nan & Montgomery, 1980)? Note that in the presence of an external magnetic
field the usual arguments used to suggest the possibility of inverse cascades
no longer apply and there is no longer any a priori reason to expect an inverse
cascade or any enhanced transfer to the longest wavelengths in the spectrum
of any particular quantity. The numerical results (Hossain et al., 1985) for
forced two-dimensional magnetohydrodynamic turbulence in a uniform exter-
nal magnetic field showed that the magnetic spectrum back-transfer ceases
well before the longest wavelength modes contain the same high fraction of
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the total mean square vector potential as in the case for no external magnetic
field. Moreover, these dominant long wavelength modes do not constitute a
resonantly coupled triad, but are coupled by the smaller-scale turbulence.

In considering the effect of the truncated subgrid scales on the tractable su-
pergrid scales one must assume some properties of the subgrid scales 37 . Here,
backed by the simulation results of Chen and Mahajan the subgrid Lorenzian
wavenumber and frequency spectra are assumed. (There is some similarity
here to the Kolmogorov inertial range energy spectrum of fluid turbulence.)

Applying the RG procedure, Zhou & Vahala (1987, 1988) evaluated the effect
of small, unresovable subgrid scales on the large scales in Alfvén wave tur-
bulence. The removal of the subgrid scales leads to a renormalized response
function, which can be calculated analytically (Again, there is a similarity to
the renormalized eddy viscosity in the RG application to fluid turbulence). To
find an explicit solution for the response function, a Lorenz frequency spec-
trum is assumed while the subgrid wavenumber spectrum was found by Chen
and Mahajan.

With these spectra for the subgrid scales, the response function has been
computed as a function of the normalized frequency ω for various values of
the Lorentz spectrum parameter. For broad Lorenz frequency spectra, the
removed subgrid scales have only a very small effect on the response function.
On the other hand, for peaked Lorenzians, there is a considerable frequency
variation in both real and imaginary part of the response function. Strong
absorption can occur around the Alfvén frequency for sharply peaked subgrid
frequency spectra.

Medvedev and Diamond (1997) presented an analytical study of the noisy
derivative nonlinear Schrodinger (noisy KNLS ) equation (Kennel et al, 1990;
Malkov et al., 1991) as a generic model of collisionless, largeamplitude Alfvénic
shocklet turbulence. Stationarity is maintained via the balance of noise and
dissipative nonlinearity. Dissipation here results from ion Landau damping,
which balances the parallel ponderomotive force produced by modulations
of the compressible Alfvén wave train. A one-loop RG! calculation calculation
was carried out. In contrast to more familiar paradigms of turbulence, dissipa-
tion arises from Landau damping, enters via nonlinearity, and is distributed
over all scales. The theory predicts that two different regimes or phases of
turbulence are possible, depending on the ratio of steepening to damping co-
efficient

37 An alternative, of course, is to assume a forcing and define its correlation function.
The application of RG to the forcing model Afvén turbulence have also been carried
out, with and without the ε-expansion method, see Zhou & Vahala, 1988, 1989
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14.3 Reduced MHD

In the RG work of Longcope & Sudan (1991), the equation of reduced MHD
(Strauss, 1977, Montgomery, 1982, Zank & Matthaeus, 1992) are introduced
and recast using the Elsasser (1956) variables. Ignoring curvature, gravity, and
density stratification the coronal loop can be modeled as a uniform magnetic
field. If one is interested in typical perpendicular scale structures, the equations
of resistive MHD can be reduced to a simpler set of equation involving the
streamfunction and the z component of the vector potential.

To elucidate the behavior of these equations the linear propagator is first iden-
tified and characterized (Longcope & Sudan, 1991). The methods of Forster
et al. (1977) and YO are used to determine the effect of the removal of an
infinitesimal shell on the dissipation coefficients. Following rescaling, a set of
ordinary differential equations (ODEs) are derived.

These ODEs describe the change of model parameters as successive shells
of modes are removed. Longcope & Sudan (1991) have examined the fixed
point of their RG procedures and determined effective diffusion coefficients
representing that range of small scales.

As expected, the resulting resistive and viscous dissipation is represented by
differential operators, whose coefficients depend upon the amplitudes of the
large-scale quantities being determined. The diffusion coefficient is also cast in
terms of large-scale quantities. Liang & Diamond (1993) obtained the subgrid
model in a closed form.

15 Application of RG to 2D MHD turbulence

The application of RG to 2D MHD turned out to be quite complicated and
challenging. Fournier at al. (1982) included 2D MHD turbulence as part of
their application of RG to d-dimensional MHD turbulence. Over the interven-
ing years, conflicting results have been obtained with the final chapter yet to
be written.

Liang & Diamond (1993) considered the feasibility of applying RG method
to 2D MHD. They noted, as was reviewed in detail earlier by Kraichnan &
Montgomery (1980), that in comparison with 3D fluids, 2D systems have more
conserved quantities (in the ideal limit). These ”rugged invariants” complicate
the ensuing dynamics of the real dissipative systems. In 2-D MHD turbulence,
two conserved quantities, namely the total energy and total mean square mag-
netic flux, flow in different direction in k space. Just as 2D fluid turbulence, the
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enstrophy flows to small spatial scales while the energy flows to large spatial
scales.

Another important phenomena in 2D MHD turbulence, which has no coun-
terpart in 2D fluid turbulence, is the Alfven effect. The Alfven effect accounts
for the strong influence of large-scale root-mean-square (rms) magnetic fields
on smaller eddies. This intrinsically nonlocal effect significantly modified the
spectra of both kinetic and magnetic energies.

Liang & Diamond (1993) have commented on the 2D MHD work of Fourier et
al. (1982). They argued that in that work, neither the dual-direction transfer
– which implies that the renormalized viscosity should have different signs –
nor the Alfven effect – which accounts for the effect of large-scale magnetic
fields on smaller scales – were addressed. Also, the exponents in the forcing
functions were left as unknown variables throughout the calculation. Thus, in
Fourier et al. (1982), the stability of fixed points in 2D MHD could not be
determined since this depended on the actual numerical values of the forcing
exponents.

Liang & Diamond claimed that there does not exist an RG fixed point for
2D MHD turbulence. They attributed this to the coexistence of the dual cas-
cade transfers. The absence of a fixed point, of course, would render the RG
method incapable of describing 2D MHD. Liang & Diamond reached a similar
conclusion for the application of RG to 2D hydrodynamic turbulence because
of the inverse energy cascade.

Kim & Yang (1999) offered a critique of Liang & Diamond and disagreed
with their basic findings on the non-existance of a fixed point. Through the
identification of the primitively divergent vertex functions, Kim & Yang (1999)
were able to shown systematically that there exist fixed point solutions of
the RG equations. Kim & Yang stated that this conclusion is reached by
identifying one important term that they claimed was missing from Liang &
Diamond.

Kim and Yang (1999) also noted several other points:

(i) The dominant role of the power exponent of the external driving noise corre-
lation in determining the correlation functions as well as the energy spectrum,
that is so apparent in hydrodynamic turbulence, persists when applying RG
to MHD.

(2) In the application of the epsilon expansion in critical (near equilibrium)
phenomena there are no problems in extrapolating the expansions to ε ≈ 1.
However, in 2D MHD turbulence, one requires ε = 15/4. This can cast some
doubt on the validity of RG results for MHD.
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Hnatich et al (2001a) criticized previous 2D MHD RG work. They remarked
that it was only conjectured that in 2D the magnetic scaling regime does not
exist due to the instability of the magnetic fixed point. Moreover, Hnatich
et al (2001a) claimed flaws in the renormalization applied to 2D fluid turbu-
lence, and even more serious shortcomings in their investigation of 2D MHD
turbulence. In their analysis they utilized a stream function and magnetic
potential.

Hnatich et al (2001a) argued that the structure of a renormalization should
always be analyzed separately. In particular, for the solution of the stochas-
tic MHD equations, it was not at all obvious that the quadratic nonlinear
terms should be excluded from a renormalization. These authors showed that
the Lorentz-force term in the momentum equation is renormalized. Hence,
Hnatich et al. claim that Liang & Dimond (1993) incorrectly neglected the
renormalization of the quadratically nonlinear terms by simply assuming they
were higher-order effect. Also, Hnatich et al. argued that Kim & Yang (1999),
in their field-theoretic treatment of the same problem, ignored the renormal-
ization of the Lorentz force without any justification and also neglected the
renormalization of the forcing correlations by effectively considering renormal-
ization of the model at d > 2. Clearly, Kin & Yang’s renormalized treatment
at d > 2 does not seem to be appropriate in a framework based the stream
function and magnetic potential – quantities that are strictly valid for 2D.

Hnatich et al (2001a) performed an RG analysis of the large-scale asymptotic
behavior of the solution of stochastically forced magnetohydrodyanmic equa-
tions for all space dimensions d ≥ 2. In particular, for the first time, they
took proper account of the additional divergences appearing in 2D. In a two-
expansion scheme, these authors found three infrared-stable fixed points in
the physically relevant region of the parameter space spanned by the forcing
parameters and the inverse magnetic Prandtl number.

16 Application of RG to 3d MHD

16.1 Camargo & Tasso and Hnatich et al.

The application of the RG technique to MHD has brought several new features
that were absent in the case of Navier-Stokes equations. The first issue in
applying the RG procedure is to make a determination on how the two forcing
functions should be introduced. In their calculation, Fournier et al. weighted
the inertial nonlinearity and Lorentz force differently. They also considered
two different coefficients for the correlations of the forces (y1 and y2).
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In their study of 3d MHD turbulence, Camargo and Tasso (1992) found that
the selection of two different coefficients is not possible in their case, because
the scaling of (z+ and z−) would have to be different from each other, and
by virture of their definitions, this does not make sense. Indeed, as it is noted
already in Fournier et al., that the magnetic field is not a passive scalar.
Camargo and Tasso (1992) believed that this obligates them to renormalize
simultaneously both the resistivity and viscosity.

Camargo and Tasso (1992) treated the full MHD equations in the manner of
YO, using Elsasser (1950, 1956) variables, and in contrast to Fournier et al.
(1982), they weight all nonlinearities in the same way. They argued that since
the MHD equations contain resistivity and viscosity, both must be simulta-
neously renormalized. The renormalized Prandtl number also deserves special
attention and its range of values can be determined by the RG technique.

Camargo and Tasso were able to determine the asymptotic behavior and de-
termine the effective resistivity and viscosity. In particular, they determine the
values of the turbulent Prandtl number as the function of a paramater which
characterizes the relative correlation (but not on the absolute values) strength
of the kinetic and magnetic stirring forces. Negative effective viscosity is not
possible in their result; instead, the tendency is to have zero effective viscosity.
In certain cases, with an extended interpretation of the calculations, negative
effective resistivity and in others zero effective restivity are obtained.

In the papers by Hnatich et al (2001a), the existence of two different anomalous
scaling regimes (kinetic and magnetic) in three dimensions was established
corresponding to two nontrivial infrared stable fixed point of renormalization
group.

The authors emphasized, as we mentioned in a previous section, that the
structure of renormalization should always be analyzed separately and it is
not at all obvious that the nonlinear terms are not renormalized in the solu-
tion of the stochastic MHD equations. In fact, direct calculation shows that
the Lorentz-force term is renormalized. There seems to be a certain amount
of confusion about this point in the recent literature. Hnatich et al (2001a)
stated that Camargo and Tasso erroneously neglect renormalization of nonlin-
ear terms as high-order effect. We will not provide further detail but simply
refer the reader to their original paper for the 3d MHD RG work by Hnatich
et al (2001a).

16.2 Verma’s justification of the Kolmogorov spectrum for MHD

Verma’s work (1999) requires some attention. Here, the RG averaging has
been performed for small wave numbers, in contrast to other RG approaches
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in which higher wavenumbers were averaged out. The effective mean magnetic
field at large wave numbers is obtained.

We are uneasy about the procedure of averaging over the small wavenumber
(large-scales) for fluid or MHD turbulence. Here, it should be stressed that
the small scale of MHD is dominated by the large-scale fields (for example,
Shebalin et al., 1983, Oughton et al., 1994, Kinney and McWilliams, 1998;
Zhou et al., 2004). The dominance of either sweeping or straining time scales
is directly linked to the large-scales. Therefore, the RG procedure for small
wavenumber may not be appropriate for MHD turbulence.

Verma (1999) also stated that a simple power counting suggests the Kol-
mogorov spectrum, and the k−3/2 prediction of the IK phenomenology does
not satisfy the RG equations (Verma, 2001, a,b). From these arguments Verma
claimed that Kraichnans power law is ruled out for strong MHD turbulence,
but may still be considered in the framework of weak turbulence theory.

Verma (2001a) assumed that the mean magnetic field is zero, and so are mag-
netic and kinetic helicities (nonhelical plasma). The calculation of the renor-
malized parameters is quite complex for arbitrary cross helicity, σC and Alfén
ratio, rA. For simplicity, two limiting cases were considerred. Furthermore,
the effects of triple nonlinearity is not also included. In order to compute the
renormalized eddy viscosity and magnetic diffusivity, the Kolmogorovs power
law is taken for the energy spectrum (2001a,b) in the recursive RG procedure.

The final renormalized coeficients are constant for small wavenumber but shifts
toward zero for larger k. As noted by Verma (200a), similar behavior has been
seen by McComb and co-workers (McComb, 1990) for fluid turbulence; this
behavior is attributed to the neglect of triple nonlinearity, and the corrective
procedure has been prescribed by Zhou et al. (1988,1989).

Restricted to nonhelical turbulence, Verma (2000b) obtained various fluxes
and Kolmogorovs constant. The impact of the approximation of dropping the
triple nonlinearity is not clear and has not been assesed. Using the flux equa-
tions, and assume the Kolmogorov spectrumd, he found that the Kolmogorov
constant does not vary significantly with the variation of rA , and it is close
to its values for fluid turbulence (Zhou and Speziale, 1998).
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17 RG based turbulence modeling

17.1 The nonlinear eddy viscosity model

The two-equation turbulence model was developed to overcome a major short-
coming of mixing-length models, namely that in practical turbulent flows in
realistic geometries, the choice of a mixing length is often not obvious, and
attempts to construct general length scales from the spatial derivatives of the
mean velocity field have not proven successful. The two-equation model also
has its shortcoming in that it depends on empirically specified model con-
stants, and requires various ad hoc modifications for low-Reynolds number
flows (Speziale, 1991).

The two-equation model expresses the eddy viscosity νt as a ratio of two
important turbulence parameters K and E:

νt = Cν
K2

E (137)

K is the turbulent kinetic energy and E the turbulent transfer rate. This
approach eliminates the need for an empirical specification of a mixing length,
because the model also provides transport equations for K and E. However, as
Eq. (137) shows, although exogenous empirical content is significantly reduced,
it is not eliminated entirely, because the model has no way to determine the
constant Cν . Typically it is determined by requiring the model to reproduce
the results for some relatively simple standard flow.

One important claim of YO is that the YO theory can bring much needed
rationality to two-equation modeling by providing theoretically derived val-
ues for the model constants, and deductive forms for low Reynolds number
turbulence.

The calculation of viscosity has effectively been already given by Eq. (81),
which exhibits both features just noted: the calculation is entirely self-contained
and introduces no empirical constants. By letting the wavenumber k be arbi-
trarily close to the Kolmogorov scale, the low Reynolds number modifications
of the viscosity, including reduction to the molecular viscosity when k actually
equals the Kolmogorov scale, are naturally included in the model. It should
perhaps be noted that even this theory does not entirely escape empirical in-
put, because it proves to require the constant of proportionality relating the
scale at which molecular viscosity is actually dominant to the Kolmogorov
scale (ν3/E)1/4.

In turbulence modeling, the eddy viscosity is used to express the unknown
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Reynolds stress through the simple proportionality

τij = νt

(
∂Ui

∂xj
+

∂Uj

∂xi

)
(138)

where Ui is the mean velocity. However, for problems like the turbulent flow in
a square duct, this simple relation is inadequate. A generalization, the algebraic
Reynolds stress model, expresses the stress by a more complex function of mean
velocity gradients. The generalization of the calculation leading to Eq. (137)
to a model in which the stresses are quadratic functions of the mean gradients
was given by Speziale, (1987, 1991), Horiuti, 1990, Rubinstein & Barton, 1990.
Here too, the low Reynolds number effects, in this case, the vanishing of the
quadratic contribution as k approaches the Kolmogorov scale, is naturally
included in the model.

De Langhe, Merci, and Dick (2005) recently developed a Hybrid RANS/LES
model with an approximate RG method.

17.2 The cubic eddy viscosity model

In Zhou et al. (1994), a formal expression for the Reynolds stress is given
and it includes both the local and nonlocal interactions was obtained based
on r-RG (section 12). It is of some interest to note that integrity basis rep-
resentations are commonly employed to represent the anisotropic part of the
Reynolds stress tensor for three dimensional turbulent flows based on a sys-
tematic derivation from a hierarchy of second-order closure models (Gatski &
Speziale, 1993). It can readily be shown that the tensors that constitute the
integrity basis are recovered for most part when the proposed r-RG model is
recast appropriately (Zhou et al., 1994).

The RG theory is utilized to develop Reynolds stress closure models for the
prediction of turbulent separated flows. The combined model includes both
the traditional and nonlinear eddy viscosity models. The ability of the pro-
posed model to accurately predict separated flows is analyzed from a combined
theoretical and computational standpoint by considering turbulent flow past a
backward facing step as a test case (Zhou et al., 1994). The final model for the
Reynolds stress, including both the nolocal and local interactions, is obtained
for the mean velocity field u,

τij = νT [∂ui/∂xj + ∂uj/∂xi]

−K3/E2[Cτ1[∂ui/∂xm∂uj/∂xm]∗+Cτ2[∂ui/∂xm∂um/∂xj +∂uj/∂xm∂um/∂xi]
∗

+Cτ3[∂um/∂xi∂um/∂xj]
∗]
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+CR1K
4/E3[∂ui/∂xm∂uj/∂xn∂un/∂xm + i←→ j] + CR2K

7/E5[∂ui/∂xm

+
∂

∂xj
[∂un/∂xh

∂2uh

∂xm∂xn
] + i←→ j]. (139)

The model coefficients for the quadratic nonlinear terms agree with those of
Rubinstein & Barton (1990) while the model coefficients for the cubic non-
linear terms are determined in Zhou et al (1994). It should be noted that
the nonlinear Reynolds stress can be recast (Zhou et al., 2004) into a form-
invariant integrity basis representation (Spencer, 1971, Pope, 1975, Gatski &
Speziale, 1993).

The results (Zhou et. al., 1994), based on detailed computations, demonstrate
that the RG model can yield very good predictions for the turbulent flow of
an incompressible viscous fluid over a backward-facing step. Thus, in spite of
its well known deficiencies, provided the anisotropy of the turbulent stresses
are properly accounted for, the two-equation turbulence models can be quite
effective for the prediction of turbulent separated flows.

Craft, Launder, and Suga (1996) also proposes a cubic relation between the
strain and vorticity tensor and the stress tensor, which does much better
than a conventional eddy-viscosity scheme in capturing effects of streamline
curvature over a range of flows. They considered the flows range from simple
shear at high strain rates and pipe flow, to flows involving strong streamline
curvature and stagnation.

17.3 The E equation

YO derived the E equation model using ε-RG method. However, Speziale
(1990) found that the original YO model performed quite poorly in homoge-
neous shear flow. The value Cε1 derived in YO yields excessively large growth
rate for the turbulent kinetic energy in homogeneous shear flow in comparision
to both physical and numerical experiments (Speziale, 1991).

Briefly, 38 closure is achieved in the exact equation for E by using iterated
mode band elimination and then applying the ε-expansion to evaluate the
final amplitudes. Smith & Reynolds (1992) found some algebraic error in the
original derivation of YO. and noted that the coefficient of the dissipative term
in E equation was not in good agreement with thegenerally accepted value.
Furthermore, YO’s derivation did not yield a term responsible for production

38 This section largely repeats the contents of a NASA contract report (Zhou et al.
1997)
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in the E equation The original derivation of YO was revised by Yakhot &
Smith (YS) (1992) by the following features:

(1) An ‘infrared cutoff’ of the random force was introduced so that
< f>f> >= 0 for 0 < k < ΛL: i.e.,

< fi(k, t)fj(k
′, t′) >= D0k

−yDij(k)δ(k + k′)δ(t− t′),

ΛL < k <∞ = 0, 0 < k < ΛL = 2
π

L
(140)

This property is needed in the derivation of the equation for the mean
rate of energy dissipation E (YS).

(2) The input of energy spectrum for the interval 0 < k < ΛL

E(k) ∼ kM (141)

is required to evaluate the integrals (with choice of exponent M = 2).
(3) Performing a Reynolds decomposition of T1 = −2ν0(∇jui)(∇jul)(∇lui)

into mean U and fluctuating u velocities.

The derivation of YO and YS starts from dynamical equations for the ho-
mogeneous part of the instantaneous rate of energy dissipation per unit mass
E ≡ ν0(∇jui)

2

∂E
∂t

+ ui∇iE =

PE︷ ︸︸ ︷
2ν0(∇jui)(∇jfi)−

T1︷ ︸︸ ︷
2ν0(∇jui)(∇jul)(∇lui)

−
T2︷ ︸︸ ︷

2ν2
0(∇j∇lui)

2−2ν0(∇jui)(∇i∇jp) + ν0∇i∇iE (142)

After some work, for stirred fluids in the long-time and large-distance limit,
the ε-RG dissipation equation (YS, 1992) is found to be

DtE = Cε1(E/K)τij∂jui −Cε2E2/K + ∂i(ανT ∂iE) −R (143)

where Cε1 = 1.42, Cε2 = 1.68 and

R = 2ν0Sij
∂ul

∂xi

∂ul

∂xj
(144)

The above ε-RG dissipation equation is not closed because of the R-term.
Now the neglect of R is only formally justified at high Reynolds number
if local isotropy is assumed. But Durbin & Speziale (1991) have questioned
the validity of local isotropy in strongly strained turbulence flows. Yakhot
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et al. (1992) have proposed a model where R = R(ζ), where the standard
form of the model is recovered for R → 0 in the limit of weak straining.
Note that Durbin (1990) has already developed a model for the production of
dissipation along these lines that was quadratic in the ratio of production to
the dissipation and, hence, quartic in ζ. Lam (1994) has published a critique
of the YS derivation 39 .

Iterating the expression for R using the Navier-Stokes equation will generate
a power series

R = νT S3
∞∑

n=0

rn(
SK

E
)n (145)

where S = (2SijSij)
1/2. It is not possible to evalute the summation since the

values of coefficients, rn, are unknown.

The R is modeled via three steps:

1. The summation is performed assuming a geometric series for every third
term, thereby reducing the number of unknown coefficients to one, β̃.

R0 = νT S3
∞∑

n=0

(−β̃)n(
SK

E )3n =
νTS3

1 + β̃ζ3
. (146)

2. For homogeneous shear flows, there is a fixed point at ζ0 = 4.38. Yakhot
et. al. (1992) then assume that this fixed point is invariant to the neglecting
of all terms but those retained in Eq. (146) above and generalize Eq. (146) to

R =
νT S3

1 + β̃ζ3
(1− ζ/ζ0). (147)

3. One now further assumes with the isotropic Reynolds stress τij = −2CνKζij

(ζij = SijK/E)

R =
Cνζ

3(1− ζ/ζ0)

1 + β̃ζ3

E3

K
=

ζ(1 − ζ/ζ0)

1 + β̃ζ3

E
K

τijSij. (148)

The undertermined constant β̃ = 0.012 for the von Kármán constant 0.4. The
final ε-RG dissipation rate transport equation is then given by

DtE = C∗
ε1(E/K)τij∂jui −Cε2E2/K + ∂i(νT ∂iE) (149)

39 For a perspective of Lam’s work, see Zhou, 1995
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where the coefficient C∗
ε1 is given by

C∗
ε1 = Cε1 −

ζ(1− ζ/ζ0)

1 + β̃ζ3
(150)

This model of Yakhot et al. (1992) has been tested for homogeneous shear
flows and for flow over a backward facing step. Excellent results are obtained
in both cases. Recently, Yakhot & Orszag have extended the model further
and applied it to complex flows using the FLUENT code.

17.4 Nagano & Itazu’s comment on YO modeling

A strong negative assesement was offerred by Nagano & Itazu (1997a) who
wade through the details of the YO and Yakhot & Smith (1992). These authors
stated that ”it becomes evident” that the Yakhot et al. K − E model is not
directly obtained from the renormalization group theory. This conclusion is
consistent with the previous subsection. Nagano & Itazu noted that from their
analysis the numerical constants claimed by Yakhot et. al. are invalid, the
modeling of E is estimated in the low wavenumber range, and the turbulent
energy dissipation rate itself is also underestimated.

Nagano & Itazu stressed that the direct numerical simulation by Kim et
al.(1987) has reveal that there is a term that dominates the production of
E - and that this term was eliminated by Yahkot et al. Not unexpectedly, this
problematic term is nothing but a triple velocity product term which arises in
the construction of the transport equation for E.

18 Summary and conclusions

In comparing the application of RG methods to hydrodynamics and to MHD,
it seems clear that the first application is much more developed, much like the
general theory. In MHD, basic questions about the proper generalization of
the energy spectrum – whether it should be the Iroshnikov-Kraichnan spec-
trum or a direct generalization of the Kolmogorov spectrum itself – remain
unanswered. Recently, Zhou et al. (2004) advanced a perspective that the cen-
tral issue is the time scale for decay of the transfer correlation functions. In
MHD turbulence there is a smooth variation between such spectral limits.
Observation of distinct spectral indices in various cases is indicative of the
enhanced effect of sweeping effects versus straining effects, or of local effects
versus nonlolcal effects, in accordance with how the prevailing conditions im-
pact the relevant time scales (Zhou et al., 2004). We cannot say that RG has
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had much success in resolving this issue theoretically. At this point, we must
await further clarification from experiments and numerical simulations. It is
fair to say, however, that RG provides an interesting approach to inspecting
both theoretical and modeling aspects of MHD and plasma turbulence.

In hydrodynamics, the defining characteristic of RG, at least in the perhaps
overly restricted sense of this review of some kind of iterated mode elimina-
tion, is the replacement of the integrations in DIA-based analytical closures
over a two-dimensional wavenumber slot by much simpler one-dimensional
integrations over a single wavenumber argument. One way or another, this
replacement arises from simplification of the triad interaction. It is likely that
this simplification will remain attractive for applications regardless of its sta-
tus from the viewpoint of fundamental theory 40 .

As a fundamental theory, RG has led, in the ε-RG (Yakhot & Orszag, 1986,
Yakhot, Orszag, and She, 1989, Dannevik, Yakhot, and Orszag, 1987) formula-
tion, to the idea of an expansion about some particularly simple theory. Even
if the correct expansion point remains uncertain, the idea itself continues to
inspire new research 41 .

There is no question that there are some advantages to working around the
limit state at which ε → 0. This is also the state where many of the first
applications of RG to turbulence by Foster et al. (1977) and Fourier & Frisch
(1983) were made. These advantages, if they could actually be realized in
high Reynolds number flows, could be indeed viewed as offering a significant
advance over renormalized perturbation theories (RPT) because this state cor-
responds to a flow with weak nonlinear interactions that permits particularly
simple analysis.

However, the key question is whether these desirable features could be main-
tained in the extrapolation from ε → 0 to ε = 4 in order to reproduce the
Kolmogorov energy spectrum (Kraichnan, 1987a,b), especially in view of the
apparent change to dominant sweeping when ε → 3. Moreover, the contro-
versy over the role of higher order nonlinearities (Eyink, 1994) suggests that
ε→ 0 is not quite so simple a turbulent state as it might at first seem. If so,
the advantages of perturbing around that state may not be so great.

To further compare and contrast RPT and ε-RG, it is interesting to note that
the RPT include both local and nonlocal interactions. This allows the flexi-
bility of a RPT model to either consider the complete range of interactions
or take the special limit of large distant where only nonlocal interactions are
kept. This capability is appealing since the DNS has shown that the local
interactions are dominant (Zhou, 1993a,b; Zhou and Vahala, 1993a; Dubois,

40 Recent examples include, for example, (Sukoriansky et al., 2005)
41 see, for example, Yakhot, 2001; L’vov & Procaccia, 2000
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Jauberteau, and Zhou, 1997). ε-RG, on the other hand, is constructed under
the limit of distant interaction. Certainly, this fact does not rule out an ade-
quate account of overall turbulence energetics, suitable say for modeling, on
the basis of this simplification of the dynamics. Indeed, Kraichnan made a pro-
found study of the question of what might be unchanged under the suppression
of local interactions. Clearly, more studies are needed to better quantify the
accuracy of modeling the effects of mode coupling with a forcing function and
an eddy viscosity at very large distant limit.

The r-RG (Zhou et al., 1988, 1989; Zhou & Vahala, 1993a,b) is an effort to in-
corporate both local and nonlocal interactions. No ε-expansion is envisaged or
introduced and the RG procedure is carried out directly with the assumption
of an inertial range energy spectrum or its correponding force correlations.
Without the benefit of distant interaction limit, the resulting renormalized
Navier-Stokes equation now involves both the quadratic and triple nonlinear-
ities (Rose, 1977). In the framework of the energy transfer equations (Leslie
and Quarini, 1979), the total spectral eddy viscosity obtained from r-RG and
closure theories are in very good agreement. The eddy viscosity also depends
on all resolved spectral space (and reproduces the cusp-like behavior of DNS
and RPT), with contributions from both quadratic and triple nonlinearities.
The price one must pay for capturing these correct physics is the significant
additional complexity.

The i-RG of McComb (McComb, 1982, 1990; McComb and Shanmugasun-
daram, 1983) attempts to stake out a middle ground: no ε parameter or ex-
pansion is used and the triple velocity products are dropped. By avoiding the
controversial aspects of the ε expansion and maintaining the quadratic nonlin-
earity of the Navier-Stokes, the i-RG has attracted some followers. However,
without the local interactions associated with the triple nonlinearities, the
i-RG eddy viscosity, like that of YO, does not have the cusp-like behavior
identified by Kraichnan (1976) and Chollet & Lesieur (1981). Our numeri-
cal studies have conclusively identified the crucial role of the local interactions
that is associated with the triple nonlinearities. McComb and co-workers (Mc-
Comb et al., 2001) have recently reached similar conclusions on the basis of
their own numerical studies.

It therefore appears that RG theories, like all effectively computable turbu-
lence theories, are compromises – compromises in the interest of analytical
tractability. Continued interest in this kind of compromise is certainly justi-
fied provided that the simplifications of the dynamics that are introduced are
well understood.
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List of Figures and Figure captions

Fig. 1 Comparison of hydrodynamics and magnetohydrodynamics: (a) In fluid
turbulence, a mean or large-scale flow sweeps the small-scale eddies without
affecting the energy transfer between length scales; (b) in magnetohydrody-
namics a mean or large-scale magneti field sweep oppositely propagating fluc-
tuations z+ and z−, which affects the energy transfer (illustrated as distortions
after the two types of fluctuation have passed through each other) (Zhou et
al., 2004)

Fig. 2 Kolmogorov’s universal scaling for one-dimensional longitudinal power
spectra. This compilation is from Chapman (1979) with late additions. (Reprinted
from Saddoughi and Veeravalli, J. Fluid Mech., 1994 with permission from
Cambridge Univ. Press)

Fig. 3 Ratios of higher-order to modal energy spectra in the return channel
(a) and in the mixing layer (b). Square, n=2, diamond, n=3. Solid symbols
and open symbols represent longitudinal and transversal components. Vertical
arrow correpond to the inertial range bounds (from Zhou et al., 1993)

Fig. 4. Scaled renormalization eddy viscosity as a function of the scaled wavenum-
ber for a relatively fine sugrdi partition (f=0.7). The unmarked curve, exhibit-
ing the cusp behavior near the cutoff wavenumber, kc, is the test-field model
result of Kraichnan while the curve marked by squre is r-RG result. The curve
marked by triangle is the r-RG model without triple nonlinearity. McComb’s
i-RG result(which is claimed to be able to somewhat avoid the triple nonlin-
earity) is shown by the dash-dot curve (Zhou et al., 1988).

Fig. 5. A comparison of the net r-RG eddy viscosity (νnet(k) = ν∗(k) + νT (k)
arising in the r-RG energy transport equation with that arising from closure
theories for free-decaying turbulence. Here ν∗(k) is the renormalized momen-
tum eddy viscosity and νT (k) is the drain eddy viscosity in the energy trans-
port equation arising from the triple nonlinearities of the renormalized r-RG
Navier-Stockes equation. The net r-RG eddy viscosity nnet(k) is plotted fro
various vaules for r = kc/Kp, where Kp is a constant which is directly cor-
related to the location of the maximum in the energy spectrum (Zhou and
Vahala, 1993a).

Fig. 6 Scale Disparity parameters for Interacting scales, s = max(k, p, q)/min(k, p, q).
Fractional contribution Π(k, s)/Π(k) to the energy flux. The straight lines in-
dicates s−2/3 and s−4/3 behaviors (Zhou, 1993b)

Fig. 7. The energy transfer functions, T <<(k), T >>(k), T ><(k), resulted from
the resolvable-resolvable, subgrid-subgrid, and resolvable-subgrid interactions
(Zhou and Vahala, 1993a)

109



Fig. 8 Spectral Eddy viscosity for the subgrid-subgrid and resolvable-subgrid
interactions (Zhou and Vahala, 1993a)

Fig. 9 Energy spectra from filtered DND vs the LES models A and model B
(Dubois, Jauberteau and Zhou, 1997)

Fig. 10 Time evolution of the correlation coefficient (LES Models A and B
with filtered DNS) (Dubois, Jauberteau and Zhou, 1997)
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